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Abstract of the Dissertation

Coherent Electron Cooling and Two Stream Instabilities Due to Electron Cooling

by
Gang Wang
Doctor of Philosophy
in
Physics
Stony Brook University
2008

This thesis deals with beam dynamics issues associated with electron cooling of an
ion beam in a storage ring. In the presence of electron cooling, various effects could
happen to the circulating ion beam other than the desired incoherent cooling due to
scattering. Firstly, the long-range Coulomb’s interaction between the ions and electrons
can coherently stabilize or destabilize the ion beam depending on certain cooling
schemes. Secondly, as a result of cooling, the momentum spread could be reduced too
much such that the Landau damping cease to stabilize the beam and cause the so-called
‘over-cooling’.  Finally, the coherent effects of the electron beam can serve as a
mechanism for stochastic cooling. Under certain circumstance, the coherent electron
cooling rate can be much higher than what is due to scattering.

The coherent instabilities of monopole, dipole and quadruple type were studied and
their thresholds as well as growth rates are given. For magnetized electron cooling
scheme, the ion clouds accumulation was studied and their effects on the two stream

instabilities were calculated for the RHIC parameters. A simulation code, TRANFT, was
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used to track the ion beam in presence of the electron coherent force and coupling
impedance of the accelerator. The instability threshold for the energy spread and the
bunch population was found from the simulation and compared with the theoretical
estimate.

Beyond the stability issues, the long range Coulomb force from the electron beam
can also be used to cool the ion beam which brings the new concept of cooling, the
coherent electron cooling. The basic concept of the coherent electron cooling is
introduced and the dynamics of the first process, the modulation process, and the second
process, the FEL amplification process, have been studied in detail. It is shown that
analytic formula can be derived to estimate the electron response to a moving ion under
certain assumptions and the FEL amplification process can be analytically described by
1D FEL theory. For more general cases of the modulation process, the numerical

calculation is also presented.
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CHAPTER 1. INTRODUCTION

1.1. Electron Cooling Technique

Stored Ion

Beam
/4 COOLING SECTION

Cooling
Electron Beam

CAVITIES

Beam
Dump

Figure 1.1 Schematic Graph of Electron Cooling.

As an essential tool of modern physics studies, particle accelerators are built around
the world to generate high quality particle beams. One of the most important parameters

to measure the performance of colliders is the Luminosity as defined below

_ N (.
4re S

where N,is the bunch population, f,is the bunch repetition frequency, & is the

transverse emittance and £’ is the betatron function at Interaction Point. As can be seen

in equation (1), the Luminosity can be increased by reducing the transverse emittance,
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Figure 1.2 Shape of Electron Cooling Force (Taken from ref.[1]). (a) Longitudinal
electron cooling force without solenoid field as a function of the ion longitudinal
velocity; (b) Transverse electron cooling force as a function of the ion transverse
velocity. The solid curve is for cooling force without solenoid field and the dash curve is

for cooling force with solenoid field.

and this is the objective of beam cooling. One of the most effective methods of beam
cooling is Electron Cooling which was proposed by G.Budker in 1960s and demonstrated
first in Novosibirsk, then later also at many other accelerators, including CERN and
Fermilab. As shown in Fig.1.1, an electron cooler is composed of an electron gun,
accelerating cavities, straight cooling section and beam dump. The cold electron beams
are generated in the electron gun, accelerated to the same velocity of the ion beams and
then merged with the ion beams. Through Coulomb collisions, the heat carried by the
ions is transferred to the electrons and result in smaller ion beam emittances. The electron
beam is renewed every turn and in the ideal case the final ion velocity spread is

determined by the following relation,



() =(v) (1.2)

where <vl.2>is the velocity spread of the ion and <v€2>is the velocity spread of the cold

electron beam generated by the electron cooler. Since the intra beam scattering within
ions tends to increase the emittance, the electron cooling has to be faster than the IBS.

The electron drag force for an ion moving with velocity v, can be estimated from the

following formula

— =N (1.3)

where F (vi) is the drag force from the electrons and p,is the momentum of the moving

ion in the commoving frame. A solenoid field is usually applied to the cooling section in
order to hold the electron beam from expanding due to the space charge, increase the
cooling rate or overcome the recombination of the ions with the cooling electrons. Figure
1.2 shows the shape of the cooling force as a function of the ion velocity and detailed

derivation and asymptotic formula can be found in ref. [1]

1.2. RHIC-II Electron Cooler Design

In order to upgrade RHIC to higher Luminosity and overcome the emittance growth due
to IBS, electron cooling was proposed and studied by the electron cooling group of

Brookhaven National Laboratory[2]. As shown in Fig.1.3, the designed electron cooler is
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Figure 1.3 ERL Based Electron Cooler For RHIC-II (Taken from ref. [2]).

Parameter Value Units

RF frequency 703.75 MHz

Bunch frequency 9.38 MHz

Bunch charge 3 Nano Coulombs
Gun kinetic energy 47 MeV

Linac kinetic energy 54.34 MeV
Normalized rms enuttance | ~3 pm

Momentum spread, rms 1.810%

Bunch length, rms 7.8 mm

Table 1.1 RHIC eCOOLER Designed Parameters (Taken from ref. [2])

o

Luinosky, 1
: b

Figure 1.4 Simulation Result of The RHIC Gold Ion Luminosity With and Without
Ecooling. The abscissa is the number of turns and the ordinate is the stored ion
Luminosity. The snapshot is taken after 4 hours run (Taken from ref. [2]).



based on the Energy Recovery Linac. The electron beam is generated in the SRF gun, the
electron bunch then passes the accelerating cavities twice in order to reach the required
energy of 54 Mev. Then, the electron bunch is delivered to the RHIC cooling section to
merge with the ion beam. A 180 degree turn has to be made by the electron beam such
that both the blue and yellow ring could be cooled. The designed parameters are shown
in Table 1.1. In the cooling section, a wiggler is included in order to reduce the
recombination rate and a few short solenoids are used to overcome the expansion of the
electron beam due to space charge. The simulation results show significant Luminosity
increase due to RHIC electron cooling as shown in Fig.1.4 for the Au ion beam.

It is necessary to mention that a strong solenoid field of 5T was included in the initial
design for the magnetized electron cooling scheme[3]. Some of its designed parameters

are used in the calculations of the following chapters.

1.3 Coherent Two Stream Interactions In Electron Cooler

According to the change of momentum and impact distance, the Coulomb interaction
is divided into the collisions and the long range interaction. Typically, the cooling force
and diffusion are caused by the collision and the long range interaction could be a reason
for beam instability. As the cooling electron beam is renewed every turn, free energy

may be introduced to the ion beams and drive the ion beam unstable[4, 5]. In the presence



of solenoid field, the instability threshold can be significantly affected by the ion clouds
densities and the efficiency of the feedback system[6]. Usually, the low order instability
has lower instability threshold than the higher order instabilities. However, as the dipole
type instability can be corrected by a feedback system, higher order oscillations might
also become dominant. When the electron beam density is below the instability threshold,
the long range interaction will generally damp the coherent oscillation of the ion beam.

The detailed modeling and calculations are described in the following chapters.

1.4 Coherent Electron Cooling

It is mentioned in section 1.3 that the long range Coulomb force from the cooling
electron beam can damp the coherent oscillation of the ion beam if the electron density is
below certain instability threshold. This damping effect can be amplified through some
instability mechanism such as the negative mass instability as mentioned in Ya.
Derbenev’s paper [7] and the instability growth in the Free Electron Laser as proposed
recently by V. N. Litvinenko[8]. Since the coherent error is proportional to the RMS
beam size or energy spread due to the central limit theory, the emittance can be reduced
by continuously correcting the coherent signal and randomizing the beam. In other words,
The basic idea of the Coherent Electron Cooling is to use the electron beam as the

picking up and correcting devices to perform stochastic cooling.



For an ideal electron beam with zero temperature in all direction, the calculations
have been made in previous work for various accelerators and significant short cooling
times have been estimated[8]. A slightly different description of the coherent electron
cooling process is given in section 6.1 for cold electron beam, which adopt the wave
description instead of the single particle description but should essentially be equivalent
to the latter. The modeling and calculations for finite temperature electron beam are also
made in Chapter 6, especially for the modulation process. Further study of the physics

encountered in the Coherent Electron Cooling process is still work in progresses.



CHAPTER 2. TWO STREAM DIPOLE INSTABILITY IN ABSENCE
OF MAGNETIC FIELD

In 1998, a substantial shorter beam life time was observed as soon as the E-Cooler
was turned on in Celsius and this phenomenon has been called ‘electron heating’[9].
Similar phenomena have also been observed by other facilities such as NAP-M, Fermi
lab, Indiana, TARN II and COSY. Although a nonlinear electric field is regarded as an
important reason for the fast beam loss in Celsius due to the fact that the electron beams
has a smaller radius than the ion beam, the coherent ion-electron beam interaction may
also play a role. For RHIC e-cooler, since the electron beam and the ion beam have
essentially the same beam size, the nonlinear electric field effects are greatly reduced and
the coherent ion-electron interaction could be important for the ion beam stability.
V.V.Parkhamchuk and V.B.Reva developed a dipole oscillation model to estimate the
growth rate due to transversal coherent oscillation induced by electron beam[4, 5]. It is
also shown that this coherent effect could be amplified in the presence of the ion clouds
ionized from the residue gas3. This model is reviewed and applied to the RHIC electron
cooling parameters. In section 2, the longitudinal two stream coupling is studied and the
instability threshold is shown for the designed RHIC parameters. In section 3, the
transverse two stream coupling equation is solved and the growth rate of the transverse
coherent oscillation is estimated for the magnetized electron cooling scheme. The effects
of the ion clouds in the cooling section have been taken into account and the dependence

of the growth rate on the neutralization factor is derived[6]. The stability analysis of the



ion clouds motion inside the cooling section has also been made in order to estimate the
neutralization ratio. It is shown that, in the presence of a strong longitudinal magnetic
field, the ion clouds may not be removed by simply making a gap due to the Larmor
oscillation resonance. The calculation for non-magnetized electron cooling design is
given in subsection 3.4 and it shows that the designed electron density is three orders of

magnitude smaller than the transverse instability threshold.

2.1. Longitudinal-Longitudinal Coupling

2.1.1. Langmuir Oscillation Equations Of Motion

&
L
Yy
i
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Figure 2.1: Illustration of Langmuir Oscillation. The coherent displacement of all
ions/electrons within a local region of the ion beam, Si, makes the charge density inside
the region different from the equilibrium and thus induces local electrostatic field, which
in turn act back on the perturbing particles and make them oscillate around the
equilibrium position.



In the presence of the electron beam, the longitudinal electrostatic oscillations
(Langmuir oscillations) can be excited and amplified from turn to turn, leading to an ion
beam instability [4-6]. As shown in Fig.2.1, the electron and ion displacement from their

equilibrium position make the local longitudinal boundaries carry opposite surface charge

o(z,t)=—en,s, (z,t)+Z.ens.(z,t),

where Z,is the ion charge number. Assuming the volume charge density variation due to

the displacement within the considered region is negligible, the electrostatic field due to

the displacement is

E (z,t) = i(enese(z, t)—Zens, (z,t)) . (2.1

&
The negative sign comes from the fact that the positive longitudinal displacement of
positive charge particles introduces positive surface charge to the right boundary and thus
creates a negative electrostatic field. The factor of 2 comes from the fact that both
boundaries contribute the same amount of surface charge with opposite sign. The
equations of longitudinal motion for an electron/ion within the considered region are

thus,

d*z ne Zne’
, 26 —_ e Sg (Z, t) + iT7i
dt & &

5,(z,0), 2.2)

2z Zne’ Zn.e?
,-d f, _4ne 5.(z,0)— ne 5.(2.0). (2.3)
dt & &

Since inside the considered region, the longitudinal position of each particle is the sum of

its equilibrium position and the longitudinal displacement, i.e.
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_ 0
Ze,i - Zc,i + Se,i >
and since the unperturbed equilibrium position for each particle is independent of time,

the equation of motion for the displacements have been obtained as following,

sze 2 2
07 +@,S, =@, (2.4)
2

d-s, )

dtz + a)pisi - a)iese (25)

, where the plasma frequencies are defined as'

2 2 2
o = "€ Z1504x10°57" 0, = |~ 6.518x10° ",
m,g, €0

1

2 2
o, = |20 50351075, w0, = |2 4396x10°s
Mg, m,&,

2.1.2. Transfer Matrix for Langmuir Oscillation in Cooling Section

Given the initial condition, the equation (2.4) and (2.5) can be solved and thus the
displacements at the back end of the cooling section can be obtained. Since the electron
beam is much colder than the ion beam and will be renewed for each turn, the initial

condition for the electron beam can be set to

VAll the numbers are given for the commoving frame densities n, = 7.697 x 10" %2 and n,=7.117x 10" 73, which correspond

to RHIC magnetized cooling parameters.
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5,(2z,0)0=0, (2.6)
d
Ese (z,0)=0, (2.7

where ¢ =0corresponds to front end of the cooling section. Equation (2.1) can be

rewritten as,
E(zt)="e (a); s.(z,0)—als.(z, t)). (2.8)
e

By applying equation (2.4), (2.5) and (2.8), the differential equation for the longitudinal

electric field can be derived as

2

d
7EZ(Z,t) = —a)gEZ(Z,l) 5

where @, = /@, + @, =1.504x10°s™". Thus the longitudinal electric field due to the
displacements of ions and electrons in the considered region turns out to be
E (z,t)= EZ (z)cos(wyt + ). (2.10)

Att =0, by equating equation (2.8) and (2.10), one gets

CoS(¢) = ———@25,(2,0), (2.11)
(2)e
sin(@) = ¢ @5 (z,0) (2.12)
E(2we © '

By equation (2.3) and (2.10), the equation of motion for ion displacement can be

rewritten to

2
%S[(z,t) = %Ez(z)cos(a)ot +9). (2.13)
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Integrating equation (2.13) over t, the velocity of the particles’ longitudinal shift can be

obtained,

%sl_ (z,t) = =S, sin(w,7)s,(z,0) + [é(cos(a)oz') -+ l]jl. (z,0), (2.14)

2

a .
where £ =—2-=1.879x107, 7= L} is the flight time in the commoving frame and
o, ¥

[, 1s the length of the cooling section. Then we can get the solution of the displacement,

Ca

s, by integrating equation (2.14),
(2.0 = [Ecos(@,r) - )+ 1,(2.0) + —[Esin(@,) + (1~ Oy, (2.0) (2.15)
@,

From equation (2.14) and (2.15), the transfer matrix for the ion displacement due to

coherent Langmuir oscillation in the cooling section is

_| &(cos(mr) ~1)+1 wi[ésin(wof)ﬂ“(l—f)a’of] _ (2.16)

— ¢, sin(w,7) ' &(cos(w,r)—1)+1

langmuir

Thus for each turn passing through the cooling section, the ions’ local longitudinal

Si Si
. = Mlangmuir . .
Si Si

T

The determinant of the transfer matrix can be represented in terms of the plasma

displacements varies as

frequencies as following,

2 2 2 2
‘M,angmuir =1+ —2)4 < @,7 sin(@w,7) + —;4 < (cos(w,7)-1), (2.17)
0 0

>1 , the electron

el le

where the relation a);a)f,e = w o, is used in the derivation. If ‘M

langmuir

beam will transfer energy to the ion oscillation and thus increase the local electrostatic

13



oscillation and cause instability. From equation (2.17), the condition for ‘M langmair| > 1 €A1
be depicted as follows,
IM |~ 1= 4“’1‘2{’3" sinz(“’Of){“’OT cot(2T) - 1} . (2.18)
@, 2 2 2
Thus the threshold for the determinant of the transfer matrix to be bigger than 1 is
@,T =271 (2.19)

The RHIC gold beam parameters in the cooling section are shown in Table 1. As shown

in Fig.2.3, the longitudinal electrostatic oscillation puts an electron density limitation,

n,, =1.24x10°m™ , which correspond to @,z =27, for the ion beam to be stable. For

the current electron cooler design, the electron beam has the parameters shown in Table

10 |I I
\
5 .
’.';“
= U 7
]
>
e
— 5 —
lII
|II
1
—10 I | I \ I
0 2 4 6
X

Figure 2.2: Sign of ‘M

langmuir

—1. The red solid curve is for y(x) = xcot(x). The plot shows the

sign changes at x = 7, i.e. @,T =27 .
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sy 15 7 mm.mrad.
BB, 60 meter

N, (Particles per bunch) 10°

L (rms Bunch length) 0.37 meter

y (Beam energy) 100

O , Ty (Ion beam size) 1.2 mm

& (Ion beam density in beam frame) 7.697x10" meter’
4 (Cooling section flight time in beam frame ) 2x107 S

Table 2.1: RHIC gold ion beam parameters in the cooling section. For simplicity, a round
beam approximation is used in the calculation. The emittance refers to 95% emittance.

5

5%10”
g
E
2 | -
[+] T—
E T
g
£
5 —5x10 T .
a
—1x10” : —
1x10" 1x10" 1x10" 1x10'°
Electron Density
Figure 2.3: ‘M langmuir| — 1 dependence of the electron beam density. The abscissa is the

electron density in unit of 7 and the ordinate is ‘ M -1.

Langmuir

15



0 20 nC
¢ (Electron charge per bunch)

1.25x10"

¢ (Electron number per bunch)

1.225x107m

O (Electron rms beam size)

Table 2.2 Electron beam parameters for the current electron cooler design.

Thus, the density limitation corresponds to a bunch length limitation of the electron

beam,

N
[ >—
ﬂ-o-ene,th}/

=8.02x10"m.

There are other limitations on the electron beam bunch length set by the requirement
of optimizing the cooling force. For example if the electron bunch is shorter than 18 cm,
Debye screening starts to reduce the cooling force. Since the electron beam bunch length
is already 2 cm at the exit of the gun and stretchers have been designed to stretch the

beam for higher cooling rate, this coherent longitudinal instability does not affect the

current RHIC magnetized electron cooler design.

Although‘M ‘Sl is necessary condition for the ion beam to be stable, it

Langmuir
may not be sufficient. In order to make the oscillation stable, any linear combination of
the velocity and displacement of the local electrostatic oscillation has to be bounded. In
other words, the eigenvalues of the transfer matrix has to be smaller or equal to 1 as well.
The two eigenvalues of the transfer matrix (2.16) can be calculated from the following

equations,

16




A, =1+ E(cos(w,r) —1) £/ Esin(@, 1)@, (& - 1) - Esin(w,7)] . (2.20)
For RHIC parameters, as we have seen above, &<<1 and equation (2.20) can be

rewritten to

A, —1=-ayrsin(a,r) + O(E). (2.21)

Therefore, the condition for |/1+ — 1| <1 is sin(w,7) =0 or

O,T =T, (2.22)
which correspond to the following electron beam bunch length

NE

2
”o-e ne,thy

I = =3.26x10"m.

Outside the cooling section, the ion beam Plasma oscillation will be described by the

following equation,

Lt wts =0, (2.23)

The corresponding transfer matrix is

COS(a)pi Trest ) M

M, = A ) (2.24)
es. pi
- a)pi Sln(wpiz-rest) cos(a)p[‘[res[)
where
T = Comne “l _1 2691077 (2.25)
e

is the flight time outside the electron cooling section and C,,,. =3833.845m is the

circumference of RHIC. Thus the one turn transfer matrix for the longitudinal plasma

oscillation is
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M. =M, M (2.26)

ring Langmuir rest *

4

1x10~ T
Eigenvalue Increment
— - Determinant Increment
5x107°F .
E
= "
5 m———— AN A
5 T —
~ / ~
— 5210 °F ™~ ~ / 4
~ e
— a0t ' L—
110" 1x10™ 1x10" 1x10™

Electron Density

Figure 2.4 Plots of the eigenvalues and the determinant of the transfer matrix. The
abscissa is the electron density in units of m . The red solid curve is |/1+| —1 and the blue

A,
, and the threshold

dash curve is |M —1lis

—1las already shown in the Fig.3. The maximal value of

langmuir

around 0.01, which is much larger than the maximum of ‘M

langmuir

happens at @,z =7 ,i.e. n, =3.1x10"m™.

107 T T
— - Eigenvalue without ring
----- Eigenvalue with ring
| |/ Determinant
%107 °F .

T'urn

Increment /

_s107°

4 1 1

—Ix10° -
=10"? =10 <107 1x10'¢

Electron Density

Figure 2.5 Comparison of the determinant and eigenvalues of M, and M

ring Langmuir

. The red

dash line is the eigenvalue of M . The blue solid and brown dot curves are the

Langmuir

determinant and eigenvalue of M, respectively. The abscissa is the commoving frame electron

density in units of m>.
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As shown in Fig.2.4, including the rest of the ring does not affect the determinant of
the one turn transfer matrix but the maximal eigenvalue does change. As a result, the
eigenvalue and the determinant set the same limitation to the electron beam density,
which for the current magnetized electron cooler design is

Ne

2
ﬂ-ae ne,th }/

=8.02x10m .

N.N
\%

The synchrotron tune of RHIC is 3.7x10™* which is 5 times faster than the maximal

growth rate, 6.6x107 per turn. So the oscillation could be distorted by the synchrotron

motion before it is actually built up.

2.2 Transverse-Transverse Coupling

When the beam enters the cooling section and merges with the cooling electron
beam, a misalignment perturbation of the two beams can cause their centroids to perform
transversal oscillation as shown in Fig.6. In order to obtain the equation of motion for the
beam centroids, let’s consider the electrostatic field within the beams in the commoving
frame. As mentioned in section 2, in commoving frame, the beams have the geometry as
the following,

1'=1y=0.18x100=18m >> &, =0.002m, (2.27)

1'=1y =03x100=30m >> &, =0.0014m . (2.28)
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As shown in Fig.6 (b), the coordinates relations among the beam centroids frame and the

commoving frame is
F=R +r'=R +r1', (2.29)

where,

Re = J.?e S, (x,y,z,t)dxdy (integrate over electron beam cross section) (2.30)

e
" =

i - I
l \ Ri g / |

(b)

Figure 2.6 Illustration of Transversal Coupling in the cooling section. (a) The red dash
curve represents for the ion beam and the blue dash-dot curve represents for the electron
beam. The two circles represent the cross-section of the two beam and the solid spots are
their centroids. (b) The cross sections of the beams shows the coordinates relations,

where similar with (a), the solid spots are the beam centroids and Re,ﬁi are their

coordinates.
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Ei = J.Fl . (x,y,z,t)dxdy (integrate over ion beam cross section).  (2.31)

Equation (2.27) and (2.28) show that infinite long beam approximation could be used to
calculate the transverse electric field. If the oscillation amplitude is smaller than the beam
size, the electric field within the overlapping part of the two beams is

E (F,t)= Hele y LN (2.32)
€L
2¢, 2¢,

Thus in the rest frame, for an ion/electron sitting in position7 and in time t, the

transversal electrostatic force it sees is

~ ‘ni' Zeni' o
Fe(F gy =tde L€ T (for an electron in (7,7)) (2.33)
2¢, 2¢,
2 = 2 2 =
Fi(Fay= 200l Zient, (for an ion in (7,7)) (2.34)
2¢, 2¢,

FFE': o’ 7'~ (7, —R), (for an electron in (7,,¢))  (2.35)
d’ =
e —w, (7, —R)+ T (for an ion in (7,)) (2.36)

Assuming the beam distribution function changes slowly with time and by integrating
equation (3.9) and (3.10) over the cross section according to the beam distribution, the

centroids’ equations of motion can be obtained as following,

2

%Ee (z,0)+ 0 R (z,1) = @ R, (z,1), (2.37)
t

d? - - -

ER,. (z,)+ . R.(z,t) = @_R (z,1). (2.38)

. 0

pi2 " ped e

The transversal commoving frame plasma frequencies, @ o, are defined as
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ne’ Z'ne’
“r "\ ome, T ame,
m.&, i€o

Zne’ Z.ne

_ i"Ye — 11
e \ame @i =12 '
i€o m.&,

Comparing with equation (2.4) and (2.5), the only difference is the coefficients of the
second terms at the left hand side both for ion and electron beam. So the steps for solving

(2.37) and (2.38) are similar with what has been done in section 2.1. By setting the initial

condition,
R (zO)—iR (z,0)=0
e ’ dt e s >
one gets
d2 ~ 21 » 1 = .
ERi (z,t) =—w,| R(z,0)cos(w,t) + —R,(z,0)sin(@y?) |, (2.40)
a)O

where @,is now defined as @, =+/@. + . . Integrating equation (3.17) from the front

end of the cooling sections =0, one obtains

%1@ (z,1) = —Ew, sin(w,t) R, (2,0) + [ + £(cos(w,t) - 1)]fei (z,0), (2.41)

R(z,7) = 1+ &(cos(,7) —1)]R (2,0) + i[mora -&)+ ésin(a)oz')]f?i (z,0),  (2.42)
,

0

2

where ¢ is now defined as £ =—%. Thus the transfer matrix of two stream dipole type

@,

transversal interaction for the ion beam centroid is

E(cos(w,r) —1)+1 i[g sin(w,r) + (1 - &)w,]
= [0)

transverse 0 >

— S, sin(w,7) E(cos(w,r) -1 +1

(2.43)
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which has exactly the same form of the transfer matrix due to the longitudinal Langmuir
oscillation as shown in equation (2.16) except that the & and @, are defined differently

from section 2.1. Thus for each turn passing through the cooling section, the transversal

centroid motion is effected by the electron beam according to the following expression,

R, R,
> = M transverse| 13 .
Ri T ‘ Ri 0

The calculation of |M is the same as in equation (2.17) and (2.18)

transverse

\M

transverse

40’ 0>
1= 2 sinz(a’of)[a’ofcot(“’”)—l}. (2.44)
: 2 2 2

As shown in Fig.2.77, since the oscillation frequency for the transverse oscillation , @, , 18
5 orders smaller than the longitudinal Langmuir oscillation, the instability threshold is 5
orders larger than what the longitudinal oscillation has and thus is not likely to be a real

limitation for the electron cooler design. The eigenvalues of M is also the same as

transverse

(2.20) with different definitions of & and @, .

A, =1+ E(cos(@,r) —1) £/ Esin(@, 1)@, (& — 1) - Esin(w,7)] . (2.45)
Comparing with the longitudinal oscillation, the instability threshold of the electron beam
density is pretty much the same for the eigenvalue restriction and the determinant

restriction as shown in Fig.8. To implement M into the ring, one need to do the

transverse
Lorentz transformation at the entrance and inverse Lorentz transformation at the end of

the cooling section since M is derived in the commoving frame. Furthermore, to

transverse

avoid double counting the phase advance inside the cooling section, one may add

% All the Figures in this subsection are given for the commoving frame densities ,, — 531025 and,, —33x10',,~ - The more

realistic calculation for non-magnetized electron cooling design with wiggler field will be given in subsetion 3.4.
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negative drift matrix to compensate. As a result, the transfer matrix in lab frame is given

by

where

Figure 2.7 The dependence Of |Mtransverse
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—1 on the electron density n, shows a instability

threshold 5 orders larger than the longitudinal Langmuir oscillation.
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Figure 2.8 Plot of
abscissa is the electron density in units of 7. The red solid curve is|/1+| —1land the blue

dot curve is |M
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24

—1for the transverse dipole type oscillation. The



cos(2zv, )+a,  -sin2zv, ) B.,sin(2zv, )

R = -1+« ,2 sin(2zv. | . >
twiss ( x.Y ) ( LY ) COS(27TV ) -, s11’1(27Z'V )
ﬂ X,y X,y X,y
Z 1
10 — -t oy
L[orentz = (O j’ Ldrtft = 1 2 s aX,y = — ﬂ;y .
Y 0 1

As shown in Fig.2.9, the threshold of the instability decreases about two orders of

magnitude after including the cooling section into the ring.

| T T
—— Growing Eigen Mode
| |-~~~ Damping Eigen Mode |
04 Determinant
02F .
g o [ .
—02F " .
_04 1 1 1 o=
210'® 21x10'% 22¢10"% 23x10'% 2.4x10'%
Electron Density
Figure 2.9 Plot of |4,,,,.,|—1and |M »auas| — 1TOT the transverse dipole type oscillation. The

abscissa is the electron density in units of m~ (in beam frame). The purple dash curve
is |M —1. The blue dot curve and the red solid curves are the two eigen-values of

M tranlab >

taken as B_ = 40meter .

tranlab

ie.|,

ranlab

—1. The tune has been taken as v = 28.23and the betatron function is

APPENDIX A: Another Way To Derive Langmuir Equation
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The longitudinal continuous equations in the co-moving beam frame are

d d
et h)=0, (A1)

where 4, ,is the line number density v,, is the average longitudinal velocity. We
consider the variation of a specific wavelength as the following

2 (5,0) =y + 2, (t)expliks) (A2)
where ﬂ:’e are the unperturbed line densities and Z,.)e(t) are the perturbation on top of the

background. One can define parameters such that

d
o =—F A3
vt,e dt gt,e ( )

& are the longitudinal displacement of an infinitesimal thin slice of the beam plus a
random constant. As we will see later, the random constant can be determined by the

local line charge density variation. Inserting (A.2) into (A.l) and taking only the first

order terms, one gets

d ~ — d
— A \s,t)+ A4, —v, =0. A4
dt t,e( ) ie dS ie ( )
From (A.2) and (A.4)
~ , _ d?
i, (" + 75 6 s1) = 2(5) (A5)
s

In order to make (A.5) be satisfied for all s, the displacement and the integral constant

must satisfy

gi,e(s’t) = Sgi,e (t)eikg )

iks

g(s)z &o€
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Thus equation (A.5) can be written as
ik, (0) - k7.6, ()= g (A.6)
The first term in equation (A.6) is proportional to the space charge force and the second

term is proportional to the displacement. The random constant is chosen such that the

force acted in the slice is zero when the displacements are zero, i.e. g, =0. Thus we have
Z,e(s’t): _ikﬂ_’i,egi,e(s’t)' (A7)

The coherent acceleration due to the longitudinal space charge force is

4, :_[M](Qi d Z+Qei/lj. (A8)
ds

dr ™ 27meym, , ds

From equation (A.3), (A.7) and (A.8), one obtains

d2 QiengZe
()=~ Ll e

2 Die
dt 2rggm, ,

0&(6)+0.4.(1)). (A.9)

The equations of motion for ion and electron displacements can be written down

separately as

d2

= 0L, — )&, (A.10)
2

Ll =00l (A1D)

The plasma frequencies are defined as the following

_ | 8o (ka)*n,e? & (ka) Z7n.e’
a)pe - Y a)pi - - .
2m, &, 2M ¢,
o - |y zne o — |Golka) Zme®
ie 2M,-€0 ’ ei 2m880

The electric field induced by the two stream perturbations is

27



E, =7 (0.8, - 0lg). (A.12)
From (A.10), (A.11) and (A.12), it is easy to show that the electric field is oscillating

with frequency o, = 1/cofn. + a)f’e and the solution can be directly integrating the following

relation

2
%fw ()= ii’e ES cos(@yt + @) .

ie

The solution of equation (A.10) and (A.11) can be expressed into the following transfer

matrix
) (1A o) AsingHi-Al Alosy)  Ap-sing) Ve
p| | —A,siny 1+Apl.(cosy/—l) A, siny Aie(l—cosy/) )2
E | A, (1-cosy) A, (y—siny) 1+Ap€(COSl//—1) A, sinl//+(l—Ap€)y/ g,
) A, siny A, (1=cosy) —-A,, siny 1+Ap9(cosy/—l) r.),
(A.13)
2 2 z
where w =at, A, = m"’z’ A, :a)—i;and Pie = S :
@, 0 @,
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CHAPTER 3. TWO STREAM DIPOLE INSTABILITIES IN
PRESENCE OF MAGNETIC FIELD

e

Figure 3.1 Transverse dipole oscillation in the cooling section with longitudinal magnetic
field. The small blue circle crossed by the magnetic field line represents the electron
Larmor oscillation orbit and the bigger circle going through it with an arrow represents
the drift motion orbit.

3.1 Transversal Coupling in Presence of Solenoid Field

For magnetized cooling, a solenoid with strong longitudinal magnetic field has to be
included in the cooling section[6, 10]. For RHIC electron cooler, one option is to include

a 30 meter long B, =57 solenoid to enhance the cooling force. The Larmor frequencies

in the beam commoving frame for the ions and electrons are

, =ﬂ=8.79x10“s’1, 3.1

ce
m

e
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o, =281 1 93x10%57 (3.2)
M

ci
i

Consequently, only the electrons are completely magnetized as the flight time is10™s.

The equation of motion for each ion or electron is similar to (2.35) or (2.36) with an

additional term coming from the magnetic force, i.e.

2
CF = 0L - R) - @G- R) -0, (7 <), (33)
d2 - 2 - o 2 = n d — A
Wri z—a)ie(rl.—Re)+a)pi(z;—R,.)+a)w.(Eri xS), (3.4)

where §is the unit vector along the longitudinal direction. Integrating (3.3) and (3.4)

over the electron and ion beam transverse distribution respectively, one gets

d—zk +®’R +o (iR x§)=w>R (3.5)
dt2 e ei” e ce dt e ei” i .
d—zﬁ +0’R - (iﬁ x§) = w’R (3.6)
dtz i et i ce dt i ie” e * *
With the following definition,
Z,=X,+iY,, (3.7
Z =X +1iY, (3.8)

where X and Y are the transversal components of R, equation (3.5) and (3.6) can be

rewritten as

iz_ﬂ'Az_:iAz, (3.9)
dt e e 1
2 -
4 g w7 vin 7 =07 (3.10)
t2 i e ci dt i ie“e

where
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2

A=Y —757%10%s7, (3.11)
w

ce

— 1
Z;i [zt

Equation (3.9) and (3.10) describe the coupling of the ion beam centroid with the guiding

center of the electron beam centroid. Taking the trial solutions as the following

Z()y=ae™™, (3.12)
Z()=ae™, (3.13)

and inserting them into (3.9) and (3.10) respectively, one gets

(~iw+iA)a, —iAa, =0, (3.14)
(@ + 0} + 0,0k - 0la, =0. (3.15)
Thus the eigenfrequencies are’
o, = %[(% + A)+ (@, + AV +4(0 - Aw, )} : (3.16)
w,=0. (3.17)

Thus, the solution of (3.9) and (3.10) should be the linear combination of three modes

with the eigenfrequencies w,, w, and w, respectively, i.e.

3
Z@)= Za[ae_i”’“z 5 (3.18)
a=1
_ 3 ‘
Z, ()= a,e"". (3.19)
a=1

From equation (3.15), one gets

3
For B, =5T. n,=7.697x10"m> andpn, =7.117x10“m™>, @, =1.946x10"s™ @ =-1.169x10°s""
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2
a,, = (1 _ Ly MJa ~Ta,, (3.20)

where

2

T, :(1—&+“’0f“’aj. (3.21)

2 2
.

ie

By using equation (3.20), equation (3.19) can be rewritten as
Z,(t)= ZTaaiae’”""’ . (3.22)
a=1
Taking the derivative of (3.18) with respect to t, one gets
d 2 ;
EZ[ )= (-iw,)a, e (3.23)
a=1

Att =0, equation (3.18), (3.22) and (3.23) can be used to determine the coefficient q,,

and the solution for equation (3.9) and (3.10) can be obtained as,

Z.(1) Z.(0)
Z,(t) |= M| Z,0) |, (3.24)
Z,@) Z,(0)
where
e i e 1Y 1 11y
M=|-iwe™ —iwe™ 0|-io, —io, 0] . (3.25)

T;e—ia)]t Tvze—i(z)zt 1 Ti T2 1
Equation (3.17) has been taken into account to get a simpler form of M in (3.25). Setting
the initial condition of the electron to be Z,(0) = 0, the solution for the ion beam centroid

can be expressed as a 2 x 2 transfer matrix, i.e.
Z.(t Z.(0
.’() =M,, .’( ) , (3.20)
Z,®) Z,(0)
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where

M,, =(m“ mlzJ, (3.27)

My My
The matrix elements of M, are listed in Appendix2, Equation (3.26) can be rewritten

into a 4 x4 matrix form in Frenet-Serret coordinate system as,

X, (1) X,(0)
X,'(t) X0, (3.28)
Y. | v0)
Y,'(1) Y,'(0)

where

A11 Ale// _Bll _Ble//

ﬁ Azz — BZI - Bzz
7—;"00[ — V// I/// . (3 29)
i B, B,V 4, A4,V
A
% Bzz — Azz

=

The matrix elements 4, ;and B, ;are listed in the Appendix 2%, In order to obtain the one

turn betatron oscillation transfer matrix, consider the ion beam transverse motion starting
from the front end of the solenoid. As the beam going through the front end, it is affected

by the fringe field and the effects can be represented by the transfer matrix’

1 0 0 0
A
_ iV
Ec = 0 0 1 0
_ iZeB, |
MY,

For B —5T: y=100>n, =7.697x10"m> > n, =7.117x10" m™ and 60 meter long cooling section, the transfer matrix T[‘m can be

calculated as shown below,

1 0.585 —6.376x107° 0.115
_ -1.618x10° 0926 -3.172x10™* 0377 |"
oot 6.376x107°  -0.115 1 0.585

3.172x107*  -0.377 -1.618x107° 0.926

5 Reader should not confused the charge number 7 in the following expression with the complex coordinates defined in (3.39)
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Then the beam need to be transferred into commoving frame since 7., ,is derived in the

CO

commoving frame. The Lorenz transfer matrix for the transverse plane is given by

lorentz

S O o =
S O X O
S = O O
XN O O O

Inside the solenoid, the ion beam sees the electron beams and the longitudinal magnetic
field, whose effects to the ion beam centroid have been described by the transfer matrix
T defined in (3.29). At the end of the solenoid, the beam has to be transformed back to
the lab frame since the edge field effects and the Twiss matrix are all given in the lab

frame. As the ion beam getting out the solenoid, it sees the fringe field again but in the

opposite direction, whose effects are described by chl. Since the drift effects inside the

solenoid has been considered in 7., already, the Twiss matrix should not include it

again. However, when the beam optics code calculates the betatron tune of the
accelerator with a cooling section, it automatically takes the cooling section drift into
account and thus it is necessary to exclude the cooling section drift from the Twiss
matrix. This exclusion can be done by inserting the drift transfer matrix for negative half

solenoid length

1 Lo o
Nlo £ o0 o
Ld”-f(__j_ B}
N 2) 0o o 1 L
2
0 0 0 I
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on both sides of the Twiss matrix and thus keeping the symmetry of the accelerator. L is

the length of the solenoid and for RHIC electron cooler L = 60meter . The Twiss matrix

for the whole ring without considering the electron-ion beam coupling is given by

4

1x10°
-5
g 1107 F
= 110" %
(¥}
z
o _
5 1x10”
e
E 1x107
g
3] 10 F
1x10” 10 '
10t

l><1Cl16

1x 1018 1><1Cl20

Electron Density In Lab Frame

Figure 3.2 The dependence of the eigenvalue increment on the electron density for
magnetized electron cooling. The abscissa is the electron density in Laboratory frame in

unit of m~, and the ordinate is the maximum value of |ﬁ,|—1 as defined in equation

(3.33)

_sin(2zv,)
.
RT wiss = 0 0
0 0

cos(2zv,.) P .sin(2xv.)

cos(2zv.)

0 0

0 0
cos(2zv,) B, sinzv)) |’
%i”’y) cos(2zv,)

where v ,v are the betatron tune including the cooling section drift and S, B are the

horizontal and vertical betatron functions at the back end of the cooling section. Thus, the

one turn betatron oscillation transfer matrix is given by

T

ring

=LypR

Twiss

Ld,mEC_lL’l

lorentz ™ cool ™ lorentz
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For RHIC, v =28.19, v =29.18 and p = B, = 60meter. The determinant of 7, for
the current RHIC parameters is calculated to be®
7| —1=7.02x107. (3.31)
And the eigenvalues of 7, are
0.191+0.982i
0.191-0.982i
A= . (3.32)
0.551+0.834i
0.551-0.834i

The amplitudes of the eigenvalues is always slightly different from one and for the

parameters listed above (3.31), they are

—~5.106x10*
-5.106x10°*
5.457x10°®
5.457x107®

2] ~1=Re(2)’ +Im(2)* ~1 = (3.33)

The maximum eigenvalue amplitude is very close to the approximate analytical formula

given by V. Parkhomchuk for short interaction time,

2 2
A/lmax — 1+1LAT_]:5'476><]O_8, (334)
v 2,

where Ais given in (3.11) and 7 = L is the flight time in commoving frame. As shown
c

in Fig. 3.2 and Fig. 3.3, for the considered ion beam and lattice parameters, the

determinant

6 . .
For B =57, y =100, =7.697x10"m™ » n, =7.117x10" m~and 60 meter long solenoid, the transfer matrix T. = canbe

ring
calculated as shown below,

0.789 67.748 0.155 13.271
o —1.544x107  —0.105 —3.024x107 —2.052x1072
e —0.164 —-12.925 0.836 65.981
2951107 7.24x10° —1.506x107 —3.696x10~
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be10” S =

10" -
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1x10°
5 ¥
1x10" 110 1x10"°

Electron Density In Lab Frame

Figure 3.3 The dependence of the determinant on the electron density for magnetized
electron cooling. The abscissa is the electron density in Laboratory frame in unit of m~.
T

The ordinate is |7,,,,|—1 as defined in equation (3.31).

of the transfer matrix and the maximum eigenvalue amplitude are always bigger than 1
which can cause the betatron oscillation amplitude increase from turn to turn. For the

current parameters, the growth rate is

(A =D

max

Ir= =43x107s", (3.35)

rev

where T, 1s the revolution frequency and C,,. =3833.845meteris the circumstance of

rhic

RHIC. The growth time is thus

1
tie =—=233s. 3.36
T (3.36)

rise

Many facilities such as NAP-M, Fermi lab, Indiana, TARN II and COSY has
observed the transverse coherent instability induced by the electron-ion coherent
interaction and different methods have been applied against it. For the dipole instabilities,

a feed back system is efficient to damp the transverse oscillation amplitude. In the Fermi

37



lab recycler, the instabilities stops after the machine have been decoupled for horizontal
and vertical motions within the cooling section. For RHIC electron cooler, since there is

no solenoid in the cooling section, this instability will not take place (Ref. Section 3.4).

3.2 Ion Clouds Effects to The Transverse Coherent Instability

If the negative charge from the electron beam is bigger than the positive charge from
the circulating ion beam, the ions produced from the residue gas can accumulate inside
the cooling section unless the incoming beams make their motion unstable. Driven by the
electron and ion beams, the accumulating ion clouds could oscillate and act back to the
circulating beams. In section 3.3.1, the ion clouds motion inside a solenoid has been
studied and stability condition has been shown for varies magnetic field strength. In
section 3.3.2, the effects of ion clouds to the transverse coherent oscillation have been

analyzed.

3.2.1 Ion Clouds Motion In The Cooling Section

38



+ + o+ + + ! + o+ + + + o+ + + + + o+ + +
+ O+ |+ + + + + + + + |+ + + + + + +
+ + + ®+ + L + ®+ + + ®+ + + + ®+ +

+ |+ + + + + + + + |+ + + + + + +
+ + + o+ + + + + + + + + o+ + + + + + + +
¥ T+ ¥ F ¥ ¥ ¥ F L F ¥ ¥ ¥ F ¥

Figure 3.4 Illustration of the ion clouds inside the solenoid. The red ‘+’ represents the ion
cloud and the filled gray region marked ‘1’ represents the incoming commoving electron
and ion bunches and blank region ‘2’ represents the space between two successive
bunches.

For the first order approximation, assume the displacement of the beam centroid is
small compared with the beam size and can be ignored for the moment. For simplicity,
we also assume the electron bunch has the same bunch length with the ion bunch (This
assumption will not make the result different from the real case since the ion motion will

only depend on the total electron charge per bunch). The equation of motion for a single

accumulated ion in region 1 (where the beams are present) is

2

F izcl + (a)czle -, )ch =0, (3.37)

cli

Z,+iw

ccl dt

where z_, describes single accumulated ion transverse position and defined as
Z(rl = xcl + iycl . (3.38)

Equation (3.37) is writing in the lab frame since the ion clouds longitudinal motion is

slow. The Larmor frequency and the plasma frequencies are defined as’

- =ﬁ=4.82x108s4, (3.39)
mcl
Z ne’ g8 -1

@, =.=—=24x10"s", (3.40)
2e,m,

7 All the numbers given in this section are for B =57, 5, =6.63x10'm™, n, =5.30x10"m™ and for hydrogen ion, i.c.

Z,=1-m,=m, (proton mass).
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2
Z ne

= Wzl.%xlog. (3.41)
Setting the trial solution of (3.37) to be
z, () =ae’™, (3.42)
and inserting (3.42) into (3.37), one get,
o -a,0-(0),-w)=0. (3.43)
Thus, the eigenfrequencies are
w, = %[a), o, + 4, - a)j,i)]= {_150;;1 ?;‘: sll . (3.44)

There are two modes for the accumulated ion oscillation with frequency
o, and @, respectively. So, (3.42) should be rewritten as the superposition of these two

modes.
2 .
z, ()= a, e . (3.45)
a=1
Set the initial condition at # =0 to be
zy =24(0), (3.46)

z,=2,(0). (3.47)

From equation (3.45)-(3.47), one gets

z,(0) _ z,(0)
(ch (t)] B Mf"”“(z'd (o)) ’ (3.48)

where M, _is the transfer matrix for the effects of the beams acting on the accumulating

Sfocus

1on clouds and is defined as
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—ioyt

1 e —m)z —w.e —m), _i(e—ia)zz _e—ia),t)
M, = ' 2

focus -t iont it | (349)
o =0, —iow,(e™ —e™) we ™ —me ™
In region 2 (the space between two successive bunches), ignoring self field interaction,

the accumulated ions only see the longitudinal magnetic field and thus their equation of

motion is
d’ . d
?ch-i-la)cclgzcl =0. (350)
Integrating equation (3.50), one gets
42,(0) —ia)ccl[zd(t) LAC (0)}, (3.51)
dt a)ccl
and
z,(t)=i———= EAL0) g ! —i—Z"l(O) +z,(0). (3.52)

ccl ccl
Taking the derivative of equation (3.52) with respect toz, the velocity of the accumulated
ion is
z,(t) = 2,(0)e """ (3.53)

From (3.52) and (3.53), the motion of the accumulated ion can be written into the

(Z.cl (t)] — MLarmor(Z‘cl (O)J , (354)
ch (t) ch (O)

is the transfer matrix for the Larmor oscillation when the accumulated ion

following matrix form,

where M

lamour

sitting between two bunches and defined as

. e*[wu,][ _ 1
_ — | (3.55)
0 e*[wcc,[
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From equation (3.48) and (3.55), the transfer matrix for one whole bunch period (the time
interval for two successive bunches passing by) is

M_ﬂ = M_fbcus (tl )MLarmor (t2)
:(m“ mlzJ ) (3.56)

My, My
where ¢ and ¢, are the bunch length and the spacing between bunches respectively. The

elements of M ,are defined in Appendix 2. The determinant of the transfer matrix is

‘Mﬂ‘ — e*i(w111+w2tl+(urdlz). (357)
Matrix M , can be rewritten into the complex form,

M,=A+iB. (3.58)

The matrix elements of 4 and B are given in Appendix 2. Similar with what we did for
equation (3.28), the 4 x4 transfer matrix for the horizontal and vertical motion of the

accumulated ions can be written as

Xcl(t) A, A4, —B, =B, |X,0) Xcl(o)
Xcl(t) _ AZl Azz _le _Bzz Xcl(o) _ Xcl(o) (3.59)
Y, (1) B, B, A4, 4, Y,(0) g Y,(0)
Ycz (1) By B, 4, 4y Ycl (0) Ycl 0)

Setting the initial condition for the ion cloud to be (1,0,0,0) and multiplying it by T, for

20 meters bunch spacing, 0.3 meters bunch length with parameter given below (3.105),
the orbit of the accumulated ion can be obtained as what shown in Fig. 3.5. As shown in
Fig.14 the ion cloud motion is composed of two parts, the Larmor oscillation and the drift
of the Larmor circle. In order to obtain the drift frequency, consider equation (3.101). It

has the same form as (3.40) with zero Z, to the RHS. Following the procedures from

42



(3.42) to (3.48), the equation of motion for the Larmor circle guiding center can be

derived as

— 7 2 — 2 —
iz _Mz -0, (3.60)
dt cl W cl

ccl

where z_d describes the guiding center and is defined as

- 1 ¢ d 1
Za=7" [z, (3.61)
where T, :2—” is the Larmor period. The solution of (3.60) for each bunch period
ccl
t,+1t,1s
o _ iede-ed),
z(t)=2,0) ™, (3.62)
where
t, = 03 _ 10757, (3.63)
c
From equation (3.39) to (3.41), one gets
2 2
O = Pae P _ g4 4141075 - (3.64)

ccl
The guiding center drift phase advance for each bunch period ¢, +1¢, is
AY 4 = @ity =0.044 rad (3.65)

For one period of guiding center drift oscillation, the number of bunches needed to pass
by the ion cloud is

27

~142. (3.66)
A‘//dnfz
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Figure 3.5 The orbit of the accumulated ion in the cooling section. The abscissa shows
the number of bunches passing by and the ordinate shows the transverse position of the
ion. The red solid curve is for the horizontal position and the blue dot curve is for the
vertical position.

This result is consistent with the turn by turn data plotting shown in Fig.1. Since the drift

motion only happens when the bunches passing by the cloud (¢ out of one bunch period
t,+1t,), the average angular drift frequency will be given by the inverse of the time

needed for one drift oscillation multiplied by 27, i.e.

Q= —6.5x10°s, (3.67)
N(t +1,)
where
t,+t,=6.77x107"s. (3.68)

The stability condition for ion clouds motion is that the maximal amplitude of the

eigenvalues of 7, must be equal or smaller than I, i.e.

| = YRE(Ae)* +Im(A,,. ) - (3.69)

Here we calculate the eigenvalues numerically and the results have been plotted in Fig.
3.6 and Fig. 3.7. As shown in Fig. 3.6, for a zero magnetic field, a gap of 180 ns is

enough to clear the ion clouds out of the cooling section. However, as the magnetic field
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increases, the stable region increases as well and when the magnetic field is around a few
Tesla, it is not likely that the ion clouds can be cleared out by simply making a gap for
the circulating beams. One more efficient way could be adjusting the strength of the
magnetic field to the unstable region as shown in Fig. 3.7. For instance, when there is no
magnetic field, bunch spacing of 20 meters will make the ion accumulate inside the
cooling section but if a longitudinal magnetic field of 0.79-0.98 is applied, the ion clouds
can be cleared out by the first resonance shown in Fig.3.7. It is also clear from Fig. 3.7, a

bunch spacing of 60 meters can not clear out the ion clouds if the magnetic field sitting at
any region where the maximal amplitude of the eigenvalues is one. Although the
electrostatic force coming from the ion clouds itself has been ignored in the above
discussion, it can be included into the equation of motion (3.37) and (3.50) easily as

shown in the following,

2
.o d
chl + lwccl _thl - a);clzcl = O s (370)
2
. 2 2 2
cml + la)ccl EZCI + (a)cle - a)cl[ - a)pc[)zcl =0. (371)

where

2 2
o, = | Lt (3.72)
2g,m,,

The ion cloud density is usually expressed into the neutralization factor 7 defined as the

following,

=2 (3.73)

So equation (3.72) can be rewritten as
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Figure 3.6 The dependence of the maximal amplitude of the eigenvalues on the bunch
spacing for various of magnetic field. The abscissa is the spacing between two successive
bunches in unit of second and the ordinate is the amplitude of the maximal eigenvalue.
The interval between two successive resonances is approximately equal to the Lamoure
oscillation period of the ion clouds. The bunch length is taken as 0.3 meters.

7> n e
e _ Iz e, . (3.74)

pcl
2¢,m,

The procedures to solve equation (3.70) and (3.71) are the same as what has been done
for equation (3.37) and the transfer matrix for them are:
a). For region 1, 1.e. (3.71), the transfer matrix has the same form as (3.49) except the

eigenfrenquecies includes the ion clouds term now

—i@y ol

Oy .€ e

—iw, 1 .~ ot —iw, t
M) =—— e e )
Sfocus \*1/ — . —i —iw .t —iw,t
O =0 —iwo, (e —e ) we " —w,e

} (3.75)

where,

Wy p) = [ @, * ccl + 4] @ — ch czd)] (3.76)
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Figure 3.7. The dependence of the maximal amplitude of the eigenvalues on the field
strength of the solenoid. The abscissa is the longitudinal magnetic field of the solenoid in
unit of Tesla and the ordinate is the maximal amplitude of the eigenvalues. The red solid
curve is for the bunch spacing equal to 60 meters (200 ns) and the blue dash curve is for
the bunch spacing to be 20 meters (67 ns). The bunch length is taken as 0.3 meters.

b). For region 2, i.e. (3.70), the transfer matrix also has the similar form as (3.49) instead

of (3.55) but with a different eigenfrequencies.

1 w,e " —w, e —i(e M =)
defocus . —iwg 5t —iwg it —iw, \t —iwg 5t |? (377)
Oy — Oy, \ — i, 0, , (e —e ) @, e —w,e
where
0, =~lo. + Jo?, — 4w’ (3.78)
dl,2 — 2 ccl — ccl clel |* .

Thus the transfer matrix for one bunch periodis M , =M, , M The 4 x4 transfer

Sfocus™"" defocus *

matrix can be obtained again as

~ [Re(M W) —ImM )j (3.79)

M Im(M,) Re(M,)
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Figure 3.8 The dependence of the maximal amplitude of the eigenvalues on the
neutralization factor 7 for varies magnetic field. The abscissa is the neutralization factor

and the ordinate is the maximal amplitude of the transfer matrix eigenvalus. The matrix is
calculated from (3.79) with bunch length 0.3 meter and bunch spacing 20 meters (67ns).

By plotting the maximal eigenvalue amplitude of the transfer matrix 7, as the

function of the neutralization factorz, a limit for the ion accumulation can be given for a

stable ion motion. Above the limit, the defocusing effects from the ion cloud itself will

stop further ion accumulation. As shown in Fig. 3.8, the limit is around 7 =0.0074 for

B,=2Tand n=0.0011forB, =5T .
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3.2.2 Transverse Coherent Instability In Presence Of The Ion Cloud

Figure 3.9. Illustration of the cooling section commoving beams and the ion cloud. The
blue dash curve represents the electron beams, the red solid curve represents circulating
ion beam and the green dot-dash curve represents the accumulated ion cloud from the
residue gas ionization. The solid spots represents their centroids respectively according to
the colors and the solid ellipses represent their cross section.

In section 3.1, the coherent two stream instability has been studied and a growth rate

of 2.8x107 per turn has been calculated due to the dipole mode centroid oscillation.
One may ask what will happen to the two stream interaction in the cooling section if the
ion cloud from the ionization of the residue gas is not completely cleared out. In this
section, the effects of the ion cloud to the electron-ion beam long range transverse
interaction will be studied.

Comparing with the situation for section 3.1, one more term due to the ion cloud
has to be added into equation (3.3) and (3.4). Thus the equations of motion for a single

circulating ion or a single electron in the lab frame are

2

%}_ﬂ; = a)i@ (17; _Re) - a)'ii (17;’ - Rz) - a)'ce (%’Z XS:) - a)‘il (l_ﬂ; - Rcl) > (3'80)
2 ~ - d _

Lah =0 - R) 0%, (- R) v 0, (R x D)+ 0, (- Ry, (3.81)
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where the subscribe ‘cl’ stands for ‘cloud’. For consistence with the previous chapter, we

are going to use primed variables such as ¢', ' for the quantities in lab frame and the non-
primed variables such as ¢, o for the quantities in the beam frame. The equation of motion

for a trapped ion is

d2 — 2 — = 2 — = d — A 2 — n d —

—r,=—0", (r,-R)+a" ,(r,—R )+  (—7r,xs)+a", (r,—R)-I"—7r

dt,z cl cle( cl e) pcl( cl cl) ccl(dt, cl ) cll( cl l) dt, cl»
(3.82)

where I can appear, for example, because of non-linearity of "external" electrical fields
created by electrons and other kinds of ions. It can be considered as free parameter.
Typically damping time is about 10-20 periods of the ion coherent perpendicular
oscillations. Equation (3.80)-(3.82) are written in the lab frame and the plasma

frequencies are defined as the following, (All the numbers here and later in this section

are given for the lab frame densitiesn',=5.3x10"m™, n',=3.3x10"m and the

hydrogen ion cloud, i.e. Z, =1and m,=m, )

] 2 2.4 2
o, = | =2295%10"s7, o= | L 1 21x10%s,
2m, &,y M &,y
' 2 v 2
o, = |21 _34x10°57, o, = |2 g 16x10°s™,
2M &,y 2m &,y
' 2 [} 2
o, = [AEama € 34 1075, o= |21 5295 [ x10°s7,
2Mi807 2m6807/
' 2 v 2
wvc[e: chnge :5_37)(108.5'_1 , a),di: ichnie :1_91)(1085_1 ’
2mc,80 2m0180

(3.83)
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where

n',=m,=33x10"m",
n',=m, =53x10"m>.

The cyclotron frequencies are defined as

Z,eB,

o =240 4.80x10%s7, (3.84)
mcl

o =21 1 93x1007, (3.85)
my

B g 7910057, (3.86)
my

Following the procedures from (3.3) to (3.10), the equations of motion for the beam

centroids R, R,and the centroid of the ion cloud R, can be derived as

2 —
%Zi + iwlci%Zi + a)'l‘ze (Zi - Ze) - a)'izcl (Zi - ch) =0 5 (3-87)
d— .., 5 —
%Ze+lAei(Ze_Zi)+lAecl(Ze_ch)zo’ (388)
: d
i Za PO =T = 2 + 04 (2 = 2) = 0, (Zy = Z) =0, (3.89)

where

12

AL =2 —757x10°s7,

el

a)ce
(0'2
A, =—L=7x599x10°s".
a)'(]e
Set the ansatz to be
Ze,i,cl = ae,i,cle_i(w'ly_k‘;‘gl) . (390)
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Equation (3.90) is written in the lab frame and the wave number is given by the periodic

condition for the ion cloud,

k=

n
TR (3.91)

where 7 is the harmonic number and R is the radius of the ring. Inserting equation (3.90)

into (3.89), one gets

- ae/a)vz +(a)vccl _il—“)a)' ac/ + a)'ile (acl - ae) - a) cli (ac/ ai) = 0 (392)
, which can be rewritten as
—T(Cl) )(a)cleaL_a)clt 1) (393)
where
-1
T(w)= — —, (3.94)
(0'-Q' N'-€Y)

and the resonant frequencies Q' , are defined as

Q' L2 _EF + ; [(0 ccl +\/(w ccl _lr ) + 4(0) cle” clt (395)

Inserting (3.90) into equation (3.87) and (3.88), one gets

(a))a + oo, a+a) (a,—a,)— " (a,—a,)=0, (3.96)

icl
(—iw)a, +iN', (a,—a,)+iN\',,(a,—a,) =0, (3.97)

where @ = w'—ck, . Inserting (3.93) into (3.96) and (3.97), one gets
|0* — 00 +02, 0 +002, 0%, T(@) g, + |02 -0, 0%, T(@)a Je, =0,  (3.98)
A T(@)e?, A'e,»]a,- wA A T~ v Ak =00 (3.99)
For non-zero solution, the determinant of the coefficient matrix must be zero, which

gives the dispersion equation that can be solved numerically for three eigenfrequencies
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Figure 3.10. Plot of the eigenvalue increment as a function of the neutralization factor for
I"'=0.1xRe(Q,)and parameters above (3.83), which shows the coherent instability

strongly depends, on the neutralization factor.

and the solution of (3.87) and (3.88) can be written as

3
Z, =Y a, e, (3.100)

J— 3 . '
Z,=Y a,e’'"". (3.101)

Forn=10"and I"=0.1xRe(QY), as an example, the eigenfrequencies are

1.9%10°—i3.6x10*s™"
®=164x10"-i23x10°s" . (3.102)
7.6x10%s™

Equation (3.100) and (3.101) has the same form as (3.18) and (3.19). Following the same
procedures from (3.20) to (3.33), the increments of the eigenvalues can be calculated for

certain ion cloud damping rate I'and neutralization factorz. Fig.3.10 shows the

calculation results of the instability increments for different neutralization level. From

Fig. 3.8, the threshold of the neutralization lever for an unstable ion clouds transverse

motion is about 7x107, which corresponding an increment of 0.01per revolution. The
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neutralization level is also limited by the vaccum quality and the geometry of the cooling

section.

3.3 Coherent Instability in Presence of Wiggler Field

In order to avoid particle loss due to the recombination in the cooling section, it is
proposed that a transverse wiggler field should be applied to increase the relative velocity
between the electron beam and the ion beam[11]. In this section, we take the wiggler
field into account and study its effects to the transverse and longitudinal coherent
instabilities. The formula have been applied to the designed non-magnetized electron

cooling parameters of RHIC and instability thresholds have been calculated.

3.3.1 Transversal Dipole Coherent Instability

For the wiggler field, the magnetic field in the lab frame is

B =0, (3.103)

B. = B, cos(22), (3.104)
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B,=B, sin(i—m) : (3.105)

where B ,A are the magnitude and the wavelength of the wiggler field respectively.

Equation of motion for a single electron in cooling section with Wiggler field

2

L =02, (5 - R) - (7~ Ry - LB (3.106)
dt m,y
The centroids equations of motion in x plane are
2
d—zxe — 07 (X, - X))+ L ina ), (3.107)
ds m,yc
2
d—in — 02 (X, - x,) - 2B s), (3.108)
ds M yc
where Q' =% =% and (v = i—” Subtract (3.108) by (3.107),
C C W
2 ~
X, +Q2X, = fsin(Q',s), (3.109)

ds

ei
meyc

i

where Q2=Q2+Q% | f=— A (1 + i’;eJ and X, = X, — X,. Equation (3.109) is a

forced hamornic oscillator and makes the trial solution to be
X, = Asin(Q' s). (3.110)

Inserting (3.110) into (3.109), one gets

~

S
Q;-Q2

Thus one of the particular solutions of (3.109) is

A

Xig = ﬁsin(Q’w S) .

0 w
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The general solution of the homogenous equation of (3.109) is
XE =A(z)cos(Q'ys +¢(2)).

Thus the overall solution of (3.109) is

~

X, = A(z)cos(QQ'ys +¢(z)) + Q'%sin(ﬂ'w s). (3.111)

12
O_Q w

Set the initial condition to be X,(z,0) = %X ,(2,0) = 0. Thus the equation of motion for

the 1on center is

oy

d? ) sin( Q' s) f
— X, =-Q"% | cos(Q', ) X,(0) + ———>=(X" (2,0) - ———Q'
dSZ i le|: ( 0 ) z( ) Q'O ( 1( ) Q%_Q'iy w)
. (3.113)
12 n
|2 p 2B G )
Q'O_Q'w Miyc
Integrate equation (3.113), one gets
X, X,
X'i = thmverse X'i 4 (31 14)
1 s 1 0
where
1+ &'(cos(Qy 5) 1) QL'[Q'O s(1—- &+ &'sin(Q s)]  a(s)
0
M, .= —&Q sin(Qs) 1+ &'(cos(Q', s)—1) a'(s)|, (3.115)
0 0 1
a(s) = _Jé éng (sin(Q'y5)-Q'ys) | & | j;+ ZeB, |(sin(€2 WS)z_QWS) . (3.116)
1-¢, Q,Q 1-¢, M .y Q"
Q2 Q"
¢, =—% and&'=—% . The transfer matrix for the ring is
Q' Q'
0 0

M, =R LM

ring

(3.117)

transverse " drift °
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where

Wiggler field strength 0.001 T
Wiggler field wavelength 0.15m
Cooling section length 60m

Electron beam size 2.36 mm
Electron rms bunch length 9mm

Electron beam charge 5nC

Electron Density 2.96x10"° m™
Ion beam horizontal tune 28.23

Ion beam vertical tune 29.23

Ion beam charge 12.64 nC

Ion rms bunch length 0.37m

Ion beam size 2.36 mm

Ton beam density 2.31x10% m™

Table 3.1. The parameters for the current non-magnetized electron cooler

design.

R =

X

cos(2zv,)

Lsin(27zvx)

X

0
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cos(2zv.) 0/,
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T
Eigenvalue for growth mode
— - Eigenvalue for damping mode
— - - Determunant

Increment / Turn

3.0510% 3.1x10

Electron Density In Lab Frame

Figure 3.11 Increment of the determinant and the eigenvalues of the transversal transfer
matrix for the ring in the nearby region of the transverse instability threshold. The

abscissa is the electron density in the Laboratory frame in unit of m ™.

I _g 0
Ly,=|0 1 o0 (3.119)
0 0 1

For the parameters listed in table 3, the transfer matrix, its determinant increment and

the eigenvalue increment for the ring are®

0.109 0.993 2.004x107

M, =|-0995 0107 -1.562x107°|,
0 0 1
ﬂ'transverse - 1 = _2'0 X 1076 b (3. 120)
|Mtransverse _1 = _40 X 1076 . (3121)

8 The plasma frequencies and the wiggler frequency for the parameters listed in Table 3.are
Q,=341x10"%rad/m Q' ,=568x10"rad/m Q',=569x10"rad/m ' =41.89rad/m f =-0.0586m/m*
£'=3.58x107 &' =5.43x107 a(60)=2.44x10"m a'(100)=2.89x10"m/m
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To obtain the threshold for the instability, the determinant and eigenvalue increment are
plotted as a function of the electron beam density in Fig. 3.11, which is the same as the
straight section case. Thus the threshold for transverse dipole instability is

n" =2.99%x10"m>, (3.122)

which is three orders of magnitude larger than the current electron density.

3.3.2 Longitudinal Dipole Coherent Instability

Since the wiggler field does not affect the longitudinal motion, the threshold for the
instability due to Langmuir oscillation can still be determined from equation (2.19) and
(2.22). As shown in Fig. 3.12, the threshold for the determinant less than one is reduced
to

n" =3.1x10"m>, (3.123)
and for the eigenvalue less than one is reduced to

™" =77%x10"m> . (3.124)
After including the rest of the RHIC ring, the threshold from the eigenvalue is the same
as what from the determinant limitation, which is shown in Fig. 2.5 and described in
Section 2.1.2. Since the cooling section is much longer than the magnetized cooling
design, the maximal growth rate is bigger than the synchrotron tune and the instability

could happen before the synchrotron motion distorts the longitudinal plasma oscillation.
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Figure 3.12 The increment of the determinant and the eigenvalue of the longitudinal
transfer Matrix for parameters listed in table 3. The abscissa is the electron density in the

Laboratory frame in units of m~. The green dash-dot curve shows the eigenvalue
increment when the plasma oscillation outside the cooling section is ignored. The blue
dash curve shows the result when oscillations outside the cooling section are included.
The red solid curve represents the determinant increment.

The electron bunch length threshold can be estimated from equation (3.123) and Table 3

tobe 1" =1.1cm.

APPENDIX B: Equation of Motion for A Single Particle

In this section, we get the solution for the ion beam centroid motion in the cooling
section due to its interaction with electron beam. However it will be necessary to know
the behavior of each single ion in the ion beam for the purpose of simulation. The
equation of motion for single ion particle can be derived as the following. Consider

equation (3.9)

60



2

EF[ = (@), - @))F + o R, — R, . (B.1)

ie” e pitti

Since we already derived the solution for R,, we only need to find the behavior of the

electron centroid to get a explicit form of the single ion equation of motion. From (3.13)

ﬁi — Ii = ﬁi (z,0)cos(myt) + %Iz(zﬁ) . (B.2)
o
Thus, we get the solution for R,
R =R — R(z,0)cos(@,t) - w R(2,0). (B.3)
o
Insert (B.3) into (B.1)
5—25 = (@}, — o)) + (@, — @ )R, - a)[i{léi(z,O) cos(@yt) + %ﬁmi (2,0)} . (B4)
Insert the definition of & in equation (2.42) into (B.4)
57 (@}~ ) = (§(@} ~}) - o ’%’msin(wot) +R(2,0) cos(wor)] e
+ (1= &)@ — @) |R (2,0)t + R (2.0)

Thus, the single ion equation of motion inside the solenoid is like a driving oscillator

2

T = (@~ 0l = (0. (B.6)

where f(¢)is the driving force and given by

10 = E@} -0 -2 D sinwn) + B (2.0) cos(wor)] +(1- Y@~ 02)|R (200 + R (2.0)|
),

0

(B.7)

Since for our case, &1is small,
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R (2,0)

0

f() =~y 13,. (z,0)+R.(z,0)]  (B.8)

sin(@,?) + R, (z,0) cos(a)ot)] +(o) - @),)

In the presence of a solenoid, the single ion motion can be described by
2

Ffi:_a);(fi—fee)+a);.(fi—1€>,.)+a)a.(%f,.><§). (B.9)

Write the above equation into the vertical and horizontal plane,

2

d
—x, =, (x, - X))+ & (x, - X))+ o, —,. B.10
dl‘2 i te( i e) pt( i 1) ci dtyl ( )
2
—y,z—a).z(y,—Y)+a)2.(y4—Y)—a).ix. (B.11)
dtz i ie i e pi i i ci dt i* :
(B.10)+i(B.1) =
? 2 v 2 d
—z.=—w,(z.-Z)tw . (z,-Z)-iw,—z,. B.12
dt2 i ze( i e) pt( i z) ci dt i ( )
Here z,describes the single ion position and defined as
Z, =X, +iy;. (B.13)
Equation (B.12) can be rewritten as
_Zzzi + ia)ciizi _(a)zi - wé)zi = wiiZe - a)ziZi . (B.14)
dt dt ’ ?
Since
Z,(t)=m,Z,(0)+ leZi 0), (B.15)
Ze (1) =my Z,(0) + m3225 0). (B.16)

wherem,,,m,,, m; and m,, are defined in APPENDIX C (C.1)-(C.6). Thus the equation

of motion for a single ion is
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2

%Zi +ia)ci%2i _(a);i _a)[ze)zi =1, (B.17)

where the driving force f(¢)is defined as the following
f(@)= (a)émn - wf)imll)zi 0)+ (a)[zem32 - a);zu'mlz )Z, 0). (B.18)
We obtained the equation of motion of single ion and by numerically integrating the

equation of motion, the beam behavior can be predicted.

APPENDIX C: Transverse Transfer Matrix Elements

The matrix elements of the complex matrix M, can be obtained from Equation

(3.25) as the following,

a)z(e’i“"t —Tl)— o, (e”""zt —Tz)
o,(1-1,)-o,(1-T,)

: (C.1)

my =

_ i1, -1 —i([ ~1)e ™ +i(T, - T)
- wz(l_Tl)_a)l(l_Tz) ’ (€2

m,

B i(()la)z (e—iwzt _e—ia)lt)

_ , C3
my, wz(l_Tl)_a)l(l—Tz) (€
@ (1-T)-we ™ (1-T,) (C.4)

2 wz(l_Tl)—a)l(l—Tz) ’
= Loy (e™™ —1)-Tyo,(e™ ~1) C.S5
ms, o,(1-T)-0(-17,) ()

_ (T = De ™ il (T, ~De ™ +i(T, - T) (C.6)

* o,(1-T)- o (1-T;)

63



The matrix elements for the corresponding real and imaginary part of M,, 4, and

B, ;are

T, —1)sin(e,t) — (T, —1)sin(,z)
wz(l_Tl)_a)l(l_Tz)

9

1 _ @lcos(@yn) = T,)— a(cos(,1) = T;)

_(
wz(l_Tl)_a)l(l_Tz) e =

PRI (sin(w,t) —sin(e;t)) PR (1-T;)cos(w,t) — o, (1 —T,)cos(w,t)
B wz(l_Tl)_a)l(l_Tz) ’ ” mz(l_Tl)_aﬁ(l_Tz) ’

B __ @ (sin(w,t) — T, ) — o, (sin(w,t) — T, B _% (1-1T, )sin(@,t) — ,(1 - T, )sin(w,t)
e o(-1)-o0-1) @,(1-T))-a(1-T,) ’

(T, —1)cos(w,t) — (T, —1)cos(ew,t) + (T, = T,) B. =% (cos(a)zt) - COS(a)lt)) ‘
o,(1-T)-o(1-T7,) C wz(l_Tl)_a)l(l_Tz)

B, =

The transfer matrix for the ion clouds motion within the solenoid, M ,, has the following

elements
a)le—iwztl _ a)ze—ia)lt] _ ia)la)z (e—icazt1 _ e—iw]tl)
= m,,=
11 s 21 )
W — W, w — @,
_ 1 . @O 1 —i(oh+0ty) _ 2o @ 1 —i(o + 0 ty) _ 1 —iwyt —iwgt
myy = (2~ Dye i 1)e i (e — e ") |,
a)l - a)2 L a)ccl a)ccl a)ccl
1 a)Z (a)l - a)ccl) —i () + Wity a)l (wz B a)ccl) —i(oty+ W, ty) a)la)z —imyt —ioy
My, = e W - —— S e W — ——= (e —e M) |.
a)l - a)Z L wccl a)ccl ccl

Matrix M, can be rewrite into a complex form,
M,=A4+iB, (C.8)

where,

PN

A
A:[ 11 12} (C.9)
4,,

22

N
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_ B, B,
B= : (C.10)
B, B,

and the matrix elements are given as the following,

_ w cos(w,t,) — w, cos(ayt,)
All - > Bll
o~ w, o —w,

_ w,sin(wyt,) — o sin(w,t,)

9

4. = (0, —w,,)sin(o,t, + 0, ,t,) — (0, —0,,)sin(of +o,t,)—osin(o,l)+ o, sin(ot,)
12 = >
a)ccl (a)l - 602)

B. = (aJl — wccl)cos(abtl + wcclt2) B (a)Z — a)ccl) Cos(wltl + wccl
12

t,)— w, cos(w,t,) + w, cos(wt,)
3
a)ccl (a)l - a)2)

w, . . w,
A, =—=—(sin(et,) —sin(w,t,)), B, =———(cos(at,) — cos(w,1,)) ,
| — @, o, — W,

_0,(® —a,,)cos(t, + o, t,) — o (0, —0,,) cos(@f +a,t,) — v, (cos(@,t,) —cos(wt,))
- b

A22
a)ccl (a)l - a)Z)

_ — 0, (&) — 0, SNyl + B t,) + 0 (@, — @) SIN@, + @, 1) + &0, (SIn(@yt,) —sin(at,)) )
a)ccl (a)l - a)z)

B

22
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CHAPTER 4. MONOPOLE AND QUADRUPOLE INSTABILITIES

Although the dipole type instabilities usually have lower density thresholds
compared to higher order instabilities, they are relatively easy to be cured by the feed-
back system. In circumstance where the dipole type instabilities are suppressed by
diagnostic systems, the envelope oscillations become dominant which can deteriorate the
beam quality and cause instabilities. In this chapter, we study what the electron beam
does to the envelope oscillations and estimate the instabilities thresholds of these
oscillations. In subsection 4.1, the transverse quadruple type envelope oscillation is
studied and applied to the parameters of Fermi Lab Recycler Ring and RHIC. In

subsection 4.2, the monopole type envelope oscillation is studied.

4.1 Quadruple Instability Due to Envelope Oscillation

Figure 4.1 Quadrupole oscillation of the Ion beam for B =0
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In the presence of the electron beam inside the cooling section, except for the

coherent dipole oscillation, the envelope oscillation of the ion beam could also be

affected [12] by the electron beam as shown in Fig. 4.1. The purpose of subsection is to

study this effects and find out what is the electron beam density threshold for the

quadruple instability to happen. This subsection is following the paper written by V.Reva

but the drift approximation for the electron beam is not used since the current electron

cooler design has no solenoid within the cooling section. As shown in V.Reva’s paper,

the Vlasov equation inside a solenoid is

14‘\/’ i_K|: afj| |:Ej_aafi|+a)He[vLX§].i:O'
ym

o o T ov, 3 v,

With the following definition,

E=x+iz,
n=x-
one gets
o _ o I
Vi- 0 f v’] a0
T, o0& on
[vl x§]-i= —iv§i+ivﬂi,
ov, ov; v,

g U
T oo, avé 76\/

As a result, the Vlasov equation can be written into the following form

[/ A g8f a9 +LE6f /A U IO/ A
or “oe on Py m| " ov, *av T o,

n n
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(4.2)
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(4.4)
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o,
'7(3\2 )
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Integrating this equation over the whole transverse phase space&,7,vgand vy, one can

obtain the following equations,

o(&?) .

s _2<§i§i> - 07
a<§i§i’> 2 Ze _

™ —<§1~ >—W<§ZE+> =0, (4.7)
A& 2ze .\

os _74”1-,3202 <9ZiE+>_0'

The electron beam has the similar Vlasov equation as the ion beam and thus it has the

following equations of motion

S Aes) =0,
§S) oy e ]

e >+W<§eb¥>—0, (4.8)
A, e (6E,)=0

Os 7’”8,3202 ety .

In (7) and (8), we consider a long straight cooling section without any external field,
i.e.k, =0. The space charge can be divided into two parts, the unperturbed dipole part

and the perturbation coming from the distortion of the beam envelope from an initial

round beam. Thus, one can write the space charge field into the following form,

E:EE’O+E€’1+E[.,O+ -

i,

!

The dipole part of the space charge is well known. In order to obtain the quadruple part of

the space charge from the envelop distortion as shown in Fig. 4.2, one can rotate the
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reference frame so that the ellipse is upright. For an upright elliptical beam, the

. 9
transversal space charge is’,

= 2Ne x' s Yoo
E l’ " — "+ . 4.9
.7) 27[50[a(a+b)l b(a+b)]} “9)

v

Figure 4.2 Illustration Of The Envelope Distortion and Coordinates System.

where N is the particle number per unit length and e is the charge of the particle. Since,
E = Ex cos(@) — Ey sin(@),
E, = Ey cos(¢) + E_ sin(p), (4.10)

the transverse space charge electric fields in the un-rotated system are

E 2Ne xcos’(¢) + ysin(g)cos(p) N 2Ne xsin’(@) — ysin(¢)cos(p)
Y 27, a(a+Db) 27e, b(a+b)

b

?S.Y Lee, 'Accelerator Physics', second edition, World Scientific Publishing Co.Pte.Ltd, p.69
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_ 2Ne — xsin(p)cos(p) + ycos’ () | 2Ne xsin(@)cos(@) + ysin’(p)

E =
2re, ala+b) 2re, b(a+b)

y

Thus the electric fields due to the envelope distortion are obtained as

£ _p _2Ne xcos’ (@) + ysin(p)cos(p)  2Ne xsin’(p) — ysin(g)cos(p)
YT g, 2a; 2re, 2a;

. (A1

_ 2Ne xcos(2¢) + ysin(2¢) b -’

4
2re, 8a,

2Ne — xsin(¢p)cos(¢) + ycos’ (@) _ 2Ne xsin(p)cos(p) + ysin® (@)
2re, 2a; 2re, 2a;

N 2Ne xsin(2p) — ycos(2¢) b -a?)
2re, 8a,

E,=E, -

¥

The components of the transverse electric field can be rewritten into the complex
combination forms defined as the following,

_ 2Ne cos(2¢) +isin(2¢)

y =

E, =E, +iE| (b* —a’)n, (4.12)

4
2rs, 8a,

_ 2Ne cos(2¢) —isin(2¢)

ly —

E_=E, —iE (b* —a*)é&. (4.13)

2re, 8a;
Since the secondary moments of the beam can be expressed into the geometric
parameters, i.e.<x’2>:a2, <y'2>:b2and<x'y’>:O, equation (4.12) and (4.13) can be

rewritten into

_ 2me 1 >
B = e G (&, (4.14)
2me 1 2
E, =- ame @) ()¢ (4.15)

where d, =2a,is the diameter of the beam and #, is the charge density. As dipole space

charge field is
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277 en, 2ren,
E0+ [} § _ 2
7
2nlen;  2rmen,
EO— = P n- P 7,
Yy V

one can obtain the following results,

/. 277 en. 2
—HE) T ) ) ),

(E.c)=

\_ inZen, .o\ imen, /. ZﬁZ,enl 27zen
(E8) = 7 (&) gy &) ad) = {es)

AEE) 1oy Ly, 24y L ye,

Os /1;. Y Y
2.2 3 2.2 2.2
where 22, = 4 212182 ¢ _25 2c and 2 =7 Z’ﬂz c 2P 20 . For B =0, the equations of
ze nl a)pi T ie ne wie
motion are
o(&’ ,
<as > -2(&&) =0, (4.16a)

R Rl v U] @10

Os o /12, 2,
a(&? .
A7) >+4U,a ‘%;JW 0. (@160

Similarly, the equation of motion for electron beam envelop are

@_2@5{:):0, (4.17a)
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a é:egc' 2 2 1 2 1 2

<8s | g >+(ﬂﬁi ) zieJ<§e>:7;<§" ) i
o(&? 1 1)
% " 4[,1_;_/1_;J<§E§6> = 170

Combining (4.16a) and (4.16b) and integrating the equation over the longitudinal location

S, one gets
(&7)+ 2(l - iJ<§f> =C,, (4.18)

where C,,is the integration constant to be determined by the initial condition. Similar

equation can also be obtained for the electron beam,

(£2)+ 2{% —%J<§Z> -, (4.19)

Thus, equation (4.7) and (4.8) are reduced to the following forms

0 <§,2> (3w, -4y, o, <§,-2> 2C, ,
ﬂ@:ﬂ‘( o 3«);—4wsJ[<§:>]+(ch(ﬂ”‘ 4

el

Suppose matrix M can diagonalize the above square matrix, i.e.

ol <§,2> |~ 6012 0 <§i2> 2C;, 2
yM(<§:>J—( 0 _QZZ)M{<§§>\J+M(2C16J(ﬂC) . (423)
With the following definition,
<§i2> G 2C;, 2
=M <§2> , (Czj EM[zC1 j(ﬁc) . (4.24)

g—;<§f> =0} (&7)+C, (4.25)



g—;<§§> =-0}(&)+C,, (4.26)
where
€, =2m |7, + o} —w;Xff>oJ+zmnl<éf>o +(o —w;Xffo, (429)
Cy=2m, (&) +(f -2, (&), |+ 2m,,(€2) ~a2 X&) | @30
Setting the electron beam initial condition to be (& >0 =(& >0 =0, the solution is derived

to be

2 f(g7), + (i - )er),|

<§12> = A cos(at + @) + (4.31)
o}
By (4.12a), one gets
o(&) .
‘o

=258 (4.32)

which combining with equation (4.24) produce the following initial conditions
<§1> =2m <§§> +2m,(EE,) =2m,(£E) (4.33)

8t 11 12\ 2e>e 0 11 191 0 4 :

where we have used the electron beam initial condition, <§€§e>0 =0. From (4.31) and

(4.33), one gets

2m (&), + 0l - 01 &), ]

4 cos(p) = (&), - (4.34)

2my, <§1§l >0

1

A sin(p,) = - (4.35)

Thus one can rewrite the solution (4.31) as
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<§12> = m““cos(a)lt) +W(l—cos(wlt))]<§iz> 2sin(@f) <§§> (1 cos(a)lt))< > 1 (4.36)
, , a)

1 1 1

Similar procedures produce the solution for <§22 > as

2

(&)= m21|:[cos(a)2t) +2(”7_2a"2’) (1- cos(a)zt))J<§,2>0 , 2sin(@,f) (6&), + 2 - cos(@,))(& >} (4.37)

@, 2 a)2

The solutions can then be inverted according to the following formula,

i) sl g o

From equation (4.38), the second order moments of the electron and the ion beam can

thus be expressed into the following matrix form

<§[2 > <Zfl2 >0 jl v Ap(Be)  As(Be) <.§i2 >0
(6&) =M | (&8, |=] 72 Ay A(fo) | (G, | (439)
2 2 (fc) 2
SO B P (o)
(Be)” (fo) ?
where
4, = iy (cos(a)lt) +2(Cl)i2"—_261)’2’i)(1 —cos(a)lt))J—M[cos(a)zt) +2(6()i2"—_6()’§i)(1 —cos(a)zt))}
M| o M| ;
_ 2mymy, sin(@yt) — 2myymy, sin(@,t) _ 2my my, _ m12m21
A, = ‘M‘a)l ‘M‘a)z Ay ‘M‘a)z (1—cos(ayt)) ‘M‘ - (1—-cos(wyt))»

2 2
2 (a)ie - a)pi )

2

(2((0; - w}zﬂ_ )

1

sin(wt) — o, sin(a)]t)J - mlzmzl( sin(w,t) — o, sin(a)zt)]] 5

m,,m,, cos(w,t) —m,,m,, cos(w,t 1 ( m,m,, .
A22:[ 1177722 ( 1) 1277721 ( 2)], A23=— 1177722 sm(a)lt)— m,my, 51n(a)2t)
M| M|

W,
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Figure 4.3 Growth rate due to envelope oscillation for RHIC Gold Ion beam and
Fermilab Recycler Ring Proton Beam. The abscissa is the electron density in the lab

frame in unit of m " and the ordinate is the determinant of the one turn transfer matrix..
(a) is calculated for RHIC parameters and (b) is for Fermilab Recycler Ring.

Ay =1~ All)(a)ii - wjn')’ 45, = _(a)ize - a)fn' )AIZ > Ay =1- (a)i - a)fn' )A13-
To include the rest part of the ring, the transfer matrix for the drift space and Twiss

matrix are given as the following,

2
%(1 + cos(4zv) S, sin(4zv) %(1 —cos(47v))
M,.=| — 1 sin(4rzv) cos(4rv) ﬂsin(47zv) , (4.40)
208, 2
1 1 . 1
s(I—cos(4rv)) ———sin(4zv) 5(1 + cos(47v))
L 1L
1 20 I
M,,(L)=]0 1 L (4.40)
0 0 1
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The one turn transfer matrix for the ring is

L L
= Mdrift (_E)Mtwisstrift (__)M

M cool *
2

(4.41)

ring

The instability happens when the determinant or the eigenvalues are greater than 1. Fig.
4.3 shows the calculated determinant and eigenvalues for designed RHIC Electron-cooler

and Fermilab’s Recycler electron cooling system. The designed electron beam density for

RHIC ecooling beam is nE’RH,C=2.97x1016m"3 and that for FNAL Recycler is

N, v =1.64x10"m™ . Since both of them are orders of magnitude smaller than the

instability threshold as shown in Fig. 4.3, the quadruple type envelope oscillation due to

the interaction with electron beam should not happen.

4.2 Monopole Mode Envelope Oscillation

Figure 4.4 Illustration of Breathing Mode Envelope Oscillation.
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Due to space charge interaction, the envelope oscillation is generally composed of
the quadruple oscillation where the area of the beam density does not change and the
monopole type oscillation where the beam density does change. The monopole type
oscillation is also known as the envelope oscillation of the breathing mode which can be
described by the well established envelope equation. In this section, we are going to
derive the instability threshold from the envelope equations of the ion and electron beam.
Consider both electron beam and ion beam have K-V distribution, the space charge

potential is

ﬂ,- xZ y2 /1 x2 y2
B(x, ) = —=2 + § 2 + :
272-“5‘0 (Ri,x + Ri.y )Ri,x (Ri,x + Ri.y )Ri,y 272.‘90 (Re,x + Re.y)Re,x (Re,x + Re.y)Re,y

(4.42)

Single particle transversal equations of motion are given by

xin_{ 20, 20, :Ixi -0, (4.43)
(R,

\X + Rz’.y )Ri,x - (Re,x + Re.y)Re,x

2 .
'xe”_|: Qpe _ 2Qu jlxe =0 , (444)
(Re,x + Re.y)Re,x (Ri,x + Ri.y )Ri,x

where the space charge space charge perveances are defined as

_ Zel, _ ZeA,
" 2me,y Brctm, “ ey picm,”
el el
_ A =4 445
P 2reyiBicim, Qa 2y’ Brcim, (445)

and the RMS transverse beam size is defined as
R =4(x7), R* =4(y}),

R =4(x’), R =4(y2). (4.46)

e
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Then, let’s derive the envelope equation from the single particle equation of motion.

Since the distribution function only depends on the Courant-Snyder invariant which is a

constant of particle motion, it satisfies'’
0
- f(G)=0,
os

where

&

x x y y

1]’ A 1]y .
G= —{7 +(w,x —wxx)z} +g—{% +(w,y —wyy)z} ,

and for K-V distribution'' f(G) = fo0(G-=1) and R, =2, l<xi2> . Taking the second order

derivative of R, one gets

The definition of the transverse emittance is

1
.= 4(<x 2><xi2> — <xix'i >2)2 :
Inserting equation (4.48) and (4.43) into (4.47), one gets

i,x ie” Vi, x

RH T3 =
R_X R,+R, (R_,.+R )R,

2 20 . 20.R.
& Qpl + Q

Similarly, one can get the envelope equation of the electron beam as below

2
. & 20,., 20..R
RE’X _ e:;X _ Qpé + Qel e,x —
R R, +R,, (R,+R )R

(4.47)

(4.48)

(4.49)

(4.50)

10 Martin Reiser, ‘“Theory and design of charged particle beams’, Wiley Series In Beam Physics And Accelerator Technology, P.343.

1 Actually other beam distribution can have a similar envelope equation due to equivalent concept. Refer to M.Reiser, P.362.
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Considering the beam having a matched envelope plus a small perturbation, one can write

the beam radius asR = R, + JoR . Since the matched beam envelopes satisfy the envelope

equation (4.49) and (4.50), the linearized equations of motion for the perturbation are

SR, +%5R ¥ 2ng (6R,, +3R,,)+ Q’ﬁR” Q}EP w 5g,, - lm(éfg; PR o, @s1)
SR, + 31? SR, 2% C(OR,, +OR,,)+ Q}ff*y 9}33 i g, — el (TR;Jr Rey) _o452)
where the following assumptions have been made
R,. =R, =R,, (4.53a)
R, .=R, =R, (4.53b)
£ =&, =& (4.53¢)
Epr =&, =&, (4.53d)
In order to obtain the equation for breathing mode, we define,
OR, =0R . +JR, ,
OR, =R, + R,
Summing up (4.51) and (4.52), one gets
SR, +(ﬁ+Q—”;+Q—;€J5R,. 2Qw in SR = 0. (4.54)
R' 2R R’
Similarly, for the electron beam, one can get
SR’ {35;2 Q—”§+Q—;’}6R 20:Ran 5p 0. (4.55)
R 2Rm R

Equation (4.54) and (4.55) can be written into the following matrix forms
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2
_(381‘ + Qpi + Qie] 2QieRim

0* (oR, R' 2R’ R’ R’ SR,
v _ o . 4
asz §Re 2’QeiRem 3862 Qpe Qei §Re ( 56)
T p3 Tl T T
R im R em 2 R em R im

Assuming matrix M can diagonalize the above square matrix, i.e.

2 OR, -k 0 OR,
Y R M| O, (4.57)
0os OR, 0 -k OR,
equation (4.57) can be rewritten as
2 (OR —k! OR
S N b (4.5
Os” | OR, 0 -k \JR,
where
OR, OR,
=M . (4.59)
OR, OR,
The solution of (4.58) is
OR, = A cos(kis+¢,), (4.60)
OR, = A,cos(k,s +@,). (4.61)

Appling the initial condition for electron beam

—m,0R,(0) + m, 0R, (0) _

SR, (0) = o) 0, (4.622)
SR (0)=— mz‘éRlégt)(;;“éR; @ _y. (4.62b)
SR (0) = "=, (ggtzﬂ’;“;‘mz © (4.62¢)
SR’ (0) = 3y0R, (0) — m 3R, (0) , (4.62d)

det(M)
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Figure 4.5 The growth rate of breathing mode envelope oscillation within cooling section
as a function of the electron rms bunch length for 5 nC total electron beam charge. The
abscissa represents the rms electron bunch length in units of meter. (a) and (b) are for

different range of bunch lengthes.

and using the inversion of equation (4.59)

OR, — M OR, _ 1 my, —my | OR,
OR, OR, ) det(M)\-m,, m, \OR,)

the solution of (4.56) can be expressed into the following matrix form,
OR, (A A OR.(0)
5R: - A21 Azz éR (0) ’

1
Ay =——
det(M)

where

(mllm22 cos(k,s) —m,m,, cos(kzs)) ,

sin(k, s sin(k, s
4, = mymy, (k )_m12m21 (ky5) 5
det(M) k, k,
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(4.64)



1 . :
Ay, = M(mummkz sin(k,s) — m,,m,,k, sin(k,s)),

1

4, = WM)(mnm22 cos(k,s) — m,m,, cos(kzs))_

Thus the growth rate for the breathing mode coming from the determinant increment is

2 2

+k
— mllm22m12m21£2 cos(k,s)cos(k,s) + 2k 0 L sin(k,s)sin(k,s) — 2}

172

TG . (4.65)

. =

det

As an example, Fig. 4.5 shows the results of (4.65) calculated for the designed RHIC

Electron Cooler parameters. It is shown that for the current electron beam design, the

electron rms bunch length is 1cm which corresponds to a damping rate I' =—4.5x107

which corresponds to a damping time of 2.8 seconds.
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CHAPTER 5. SIMULATIONS OF RHIC INSTABILITY IN
PRESENCE OF ECOOLING

Although the major task of RHIC-II electron cooling is to compensate the transverse
emittance growth due to IBS, the longitudinal cooling could also happen for certain
cooling schemes[13]. As a result, the energy spread of the ion beam decreases with the
cooling process and may eventually destroy the Landau damping. Depending on the
specific impedances of the machine, either longitudinal or transverse coherent
instabilities will take place and thus cause emittance deterioration or beam loss. On the
other hand, the electron beam itself can also coherently interact with the ion beam and
thus affect the instability threshold and growth rate. A tracking code, TRAFT, is used to
study the coherent instability of the RHIC ion beam with the coherent effects of the
electron cooling being taken into account. In section 5.1, we describe the simulation
algorithm and the impedances used for the RHIC simulation. In section 5.2, the
simulation results are shown and the energy spread threshold for the instability is
compared with analytic formula derived from the coasting beam dispersion relation. For
the current10’ions per bunch, when the chromaticity is set to a slightly positive value at
the top energy, the longitudinal instability happens before the transverse instability as the
energy spread decreasing. However this is not true for a longer bunch with the same
longitudinal phase space density. For fixed bunch length and increasing particle numbers,

the transverse head-tail instability happens before the longitudinal instability but its
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growth can be suppressed by the coherent damping effect of the electron beam, which is

shown in section 5.3. We make conclusion in section 5.4.

5.1 Tracking Codes Description

The FORTRAN program TRANFT simulates coherent instability in circular machine by

using FFT logarithms. Each ion bunch is represented by 10*~10°macro particles, which

are updated every turn according to the following equations[14]

gn+1 = 8n + Lz [Vrj (Tn )_ Vx,n (Tn )] 4 (5 1)
mc
2-nJrl = z-n + 7:2)77 8n+1 s (52)
Yo
X X
[p ] = MecooleakeMTWlSS( j ’ (5 3)
X/ n+l X/ n

where ¢ is the energy deviation in units ofy,and 7 is the arrival time of the particle with
respect of the synchronous particle. V, , is the longitudinal voltage due to the Wakefield

and is calculated by convolving the beam current with the Wakefield.

V0=~ [ W)l e (5.4)

T
Equation (5.5.3) is a short hand expression for three different transverse effects. M, 1s

the effect due to external focusing, which can be written as
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cos(27rvx) Bue sin(27rvx)

x 1 X = é‘an Dx
MTWISSE Xl = _Sm(ﬂz”‘/x) cos(27zvx) E ». l + 5n+1( 0 j (5.5)
avg

, Where 5 — b _andv, =v ,+¢&6,. M, is the transverse kick due to Wakefield and

] wake
Y070

can be calculated by convolving the dipole momentum of the beam with the transverse

Wakefield.

““\p.) \p.+Ap.) '

Ap, =— ]QWY(T)D(t ~r)r. (5.7)

The dipole momentum is defined as D(t) =] (t)(x(t)). In principal, one can directly apply

equation (5.5.4) and (5.5.7) to sum up the contribution from each macro-particle.
However the amount of calculations can be greatly reduced by placing the macro-
particles in an evenly distributed grids and use FFT technique to calculate the
longitudinal and transverse voltages. Since the convolution in time domain is equivalent
to multiply in the frequency domain, the Wakefield is transformed into Impedance,
multiplied by the Fourier component of the current and then transformed back to the time
domain to get the voltages for each grid point. In order to obtain the kicks for each
macro-particle, linear interpolation is applied between the grids. The resistive wall

impedance was estimated by the low frequency formula

Z,(0)=[1 - isen(@)} o e (5.8)
2,(@)=[1-isgn(@)) 22 2 (5.9)
2b w,
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c

, where o, = ~ , b=3cmand o ~1.39x10°Q'm " are the skin depth, radius and
Nej0)

conductivity of the wall respectively. Z,=377Q is the impedance of the free space,

R~ 610mis the average radius of RHIC. The transverse space charge impedance was

calculated by the following formula
Z,R (5.10)

Z Lse =

- ﬁzyzaz

, where a =20, is the radius of equivalent uniform beam. The impedance due to bellows

and abort kicker are approximated by RLC resonant circuits model[15].
Z,., = R, 2] (5.11)
g -2
o o,

is the oscillation frequency of the wake field. The parameters of

, where o =, [1-—
40

the considered broad band impedances are listed in Table 4. The inductive longitudinal

impedance of
0 R,(MQ-m™) S (wariz)
Bellows 1.74 1.00 5.2x10°
Abort Kicker 0.66 1.05 46.3

Table 5.1. Parameters for Transverse Broad Band Impedance

. =3jQ[14]. In order to implement it into the simulation,

RHIC was measured to be

longitudinal resonant model was assumed with test parameters Q =2 and f, =2GHz.
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R
Z//BB — sh . (5 . 12)
. Z-Q[wr : wj

o0 o,
The shunt impedance is determined by requiring equation (5.5.12) giving the measured

37Q at the low frequency limit.

R, =i0ZL % £153x10°Q. (5.13)
n a)rev

Since the beam distribution in the frequency domain is below 0.5GHz , the simulation was
not sensitive to the test parameters. The impedance from the BPMs are approximated by
the following form

Ry, (5.14)
L@
i—-—1

a

”

Zihpm (a)) =

, where R, =9.17x10°Q-m"'and «a, =6.54x10%s™". It corresponds to an exponentially

decay wake in the time domain and gives a smoother impedance in the frequency domain
as shown in Figure 5.1 (a). The longitudinal and transverse impedance are plotted in

Figure 5.1. M, in equation (5.5.3) is due to the long range interaction with the electron

ecoo

cooling beam. For non-magnetized electron cooling[16],

Mecool( X j _ Se(cosy,, =) +1 kL [(fie siny,, +(1- ég)(//mh] (<<x> )

coh
' - iekc’()l Sln coh ie (COS coh 1) + 1 px>
s 1 N (5.15)
COS l//inc _Sin l//inc { X — <x> ]
—k, siny, . cosy, P, — <Px>

2
k, . : :
, where &, = ( e ] . The coherent and incoherent wave number of the interaction are

coh

defined as
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Figure 5.1 Impedance Used for RHIC Instability Simulation. (a) Transverse Impedance
used for RHIC simulation. The red solid curve is the real part of the transverse impedance
and the solid blue curve is the imaginary part of the transverse impedance. The dot blue
and dot red shows the impedance when step form for BPMs wake being applied. The
black dash-dot curve shows the beam distribution. (b) Longitudinal Impedance used in
RHIC simulation. The red solid curve and the blue dash curve are the real and imaginary
parts of the longitudinal impedance over n respectively. The brown dash-dot curve shows
the equivalent Gaussian beam distribution in the frequency domain.

2
inc=L Zi63 ne s (516)
Be\ 27" M,
2
L i L (5.17)
Pe\2&y \ M, m,

Accordingly, the coherent and incoherent phases advance over the cooling section are

lcool and [//inc = k l

inc”cool *

givenby ., =k

coh

5.2 Simulation Results
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Since the rf voltage and harmonic number were kept the same for all simulations, the
momentum spread was always proportional to the bunch length. In order to investigate
the momentum spread threshold of overcooling, the initial bunch length was gradually

reduced from its current operational value o, =20cmuntil either longitudinal or
transverse instability was observed. Table 5 shows the beam parameters we used for the

simulation. About10’macro-particles were tracked during the simulation. The initial

longitudinal distribution was parabolic and the initial rf voltage was linear. The beam was

Beam Energy , 100
Beam Particle Au™
Transverse rms Emittance & (z-mm-mrad ) 42
Bunch Population 10°
RF Voltage (MV) 3
RF Harmonic number 2520
Chromaticity ¢, 2

Table 5.2 Parameters for RHIC coherent instability simulation

adiabatically matched to a sinusoidal rf voltage within 1000 turns. As shown in Figure
5.2 (a), for initialdp/ p <1.4x10*the longitudinal emittance started to grow rapidly.

After a few hundreds turns, the momentum spread increased well above the stability
threshold and the growth was suppressed as the beam reached to its new equilibrium.

Figure 5.2 (b) shows the longitudinal beam profile after 5000 turns. As one can see the
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Figure 5.2 (a) Momentum spread evolution for chromaticity & :2. The abscissa is the
number of turns being simulated and the ordinate is the momentum spread ¢p/ p in unit of

y . The decreasing before 1000 turn is due to the mismatch of the longitudinal phase

space. Each curve has different initial bunch length and momentum spread as shown; (b)
Longitudinal beam profiles after 5000 turns. Each curve shows the longitudinal beam
profile for corresponding curve in Figure 5.2(a). The abscissa is longitudinal position
along the bunch and the ordinate is the macro-particle density.

coherent oscillation was still pretty strong although it was not growing anymore. There
were no transverse coherent oscillation growths observed for 10’ions per bunch and
& =2 as shown in Figure 5.3. The coherence of a bunch is defined as the following

J1l(x) +(p.) i
j 1(¢)dt

coherence =

(5.18)

, Where <x> and ( px>are the average position and transverse angle for the slice [t, t+ dt] and

the integration is over the whole bunch. From Figure 5.2 and Figure 5.3, we see that the
longitudinal microwave instability happens before the transverse instability for the

current operational parameters. The instability threshold was found to be

o, ~1.4x107*, which is a factor of 3 smaller than the current momentum spread.

p,sim
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During the simulation, the longitudinal oscillation built up very fast (less than 100 turns)
and the wavelengths of the perturbation were usually smaller than the bunch length. Since
the synchrotron oscillation was slower than the coherent oscillation growth rate, the
dispersion relation for a coasting beam should be able to estimate the instability

threshold. For the parabolic distributed beam, the dispersion relation is[17]

Z,(w) {mﬁjidx} (5.19)

n X+ X

3Zel veak
2m0m, v B (P D)

V24 ol

. \op/p is the
na)0|77|(5p I'p )FWHH ( )FWHH

, where A, =

and x, =

full width half height of the momentum spread which is related to the rms momentum

(517 /p )FWHH

24/2In2

spread by o, = and Aw,is the complex coherent tune shift. The solution of

Equation (5.19) is plotted into the impedance plane as shown in Figure 5.4. The

instability threshold can be determined by the Keil-Schnell criteria

—1.5x107*. (5.20)

_ \/ (Z// /n)lpeakzie
(

O =
Pt 2In2)m,c’y, S|
In the calculation of Equation (5.20), we used the peak current directly obtained from the
simulation, /,,, ~184. Comparing Equation (5.20) with the simulation results, we see

that the agreement is within 10%. Since the chromaticity was set to 2, the rigid head-tail

mode (x=0) was damped. As we can see from Fig. 5.3 (a), when the chromaticity was

set to negative, the head-tail instability took place and the growth rate was proportional to

the absolute value of the chromaticity as expected from theory. Because of the non-linear
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Figure 5.3 (a) The transverse coherence evolution for varies chromaticity. The red and
green curves are for & =0, 2 respectively. The blue and purple curves are for £ =-2 and
& =-3. The abscissa is the simulation time in unit of turns and the ordinate is the

coherence as defined in equation (5.18); (b) The side view of the beam after 5000 turns.
The abscissa is the longitudinal position along the beam in unit of seconds and the
ordinate is the transverse displacement in units of meter. The red curve is for £ =0and

the green curve is for £ =-3
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Figure 5.4 The growth rate contour in the normalized impedance plane foro, = 1.7x107* . The abscissa
and ordinate are Re(Z// / n) and ImZ,/ n) respectively. The red dash curve is the contour for
Im(x,) =—0.1 and the blue dot line is the instability threshold contour. The black solid circle is for
|Z// /n| =30hm .
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component of the rf voltage and the wake field, the higher order head-tail modes were
actually landau damped by the synchrotron tune spread. As the number of particle inside
the bunch increasing, the landau damping would eventually cease and for weak coupling

and short bunch, the threshold can be estimated by the following dispersion relation[ 18]

-1

2l 1 4
| eCIav 1 277 Hs l/IO (Hs)
Z”_Z2E@{é”w£][?ﬁaj lw%[wdtfj © vt vi) |

Q+o, . . o
, where Q =0, +iQ, = ~ is the coherent tune shift and the longitudinal synchrotron

W,

oscillation Hamiltonian is defined as

ew,|V , cos 2
L R G T v Y. (5.22)
2 27E, 5, ho,
The effective impedance Z is defined as
0 é; 2‘/“‘
Z,= z (n -0, + I;Q)j Z(na)o —a)y+,ua)so). (5.23)

The simulation result for £ =2 is shown in Fig. 5.5. As the bunch population going

beyond5x10’, the transverse motion became unstable and the growth rates were in order
of 10~ per turn, which is consistent with the solution of dispersion relation as shown in
Figure 5.6 (a). Figure 5.5 indicates that the unstable mode is for m =1, u = 1head-tail
mode and the threshold for the instability should be between 7, =4x10”andn, =5x10°.
Numerical solutions of the dispersion relation, equation (5.21), are shown in Figure 5.6
(a). As shown in Figure 5.6 (b), the instability threshold prediction from the dispersion

relation isn, ~3.5x 10°, which agrees with the simulation result within 30%. When the
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Figure 5.5 (a) The transverse coherence evolution for y =1Head-tail mode. The abscissa

is simulation time in unit of turns and the ordinate is the coherence as defined in Equation
(5.18). The red green blue and purple curve are for bunch population of

10",8x10°,5x10°and 4 x10° respectively. (b) A snapshot of the transverse displacement
along the bunch. The red and green curves are for 8x10”and 5x10”ions per bunch. The
green curve is taken after 10°turns and red is taken after 5x10* turns.
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Figure 5.6 (a) Coherent tune shift contours for £ = 1 Head-tail mode. The abscissa and the ordinate are the
real and imaginary part of the effective impedance in Equation (5.5.22). The bunch population
is5x10%and each curve corresponds to a specific growth rate; (b) Stability threshold contours for
M =1 Head-tail mode. The blue, purple and red curve are the stability threshold contours for bunch

population of,10?,3.5x10” and 4 x10° respectively. The ‘X’ marks the value calculated directly from the
definition, Equation (5.5.23), using the impedance shown in Figure 4.6.
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Transverse Coherence Evolution With Coherent Ecooling Effects
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Figure 5.7 (a) The Transverse Coherence Evolution With Varies E-cooling Parameters.
The bunch population is 6x10°and the chromaticity is 2. (b) The Side View of The

Bunch After 8 x10*turns. The abscissa is the coherent transverse angle multiplied by the
average Beta function and the ordinate is the longitudinal position along the bunch.

beam is stable, the usually weak coherent interaction between electron cooling beam and

ion beam does not play any role except for a tiny coherent tune shift. However, the slow
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higher order head-tail instability growth could be suppressed by the coherent force
exerted by the electron beam. As shown in Figure 5.7, the coherent damping effect of the
electron beam is small for the current electron cooler design but can be increased

dramatically by increase the cooling section length since the damping rate is proportional

tol *

ecool *

In addition to the stability problems, having more particles within the bunch

would increase the IBS rate and thus cause the emittance deterioration, which also require

higher electron charge and longer cooling section.

5.3 Conclusion

The single bunch simulation shows that the longitudinal microwave instability

threshold can be accurately estimated by the coasting beam formula and for the current

operational beam parameters, the threshold was found to bedp/p~1.5x107". The
transverse motion is stable for & =2andn, <4x 10°. High order head tail instability will

occur if the bunch population is beyond the Landau damping threshold determined by the
synchrotron frequency spread. The growth rate of x =1head tail mode is in the order of
10° ~10*. This slow growth can be suppressed by the coherent force exerted by the
cooling electron beam and in order to increase the head-tail threshold substantially, the

length of the cooling section has to be at least 200 meters.
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CHAPTER 6. COHERENT ELECTRON COOLING

6.1 Basic Concept of CEC

The coherent electron cooling is to use the electron beam as both the picking up and
kicker devices to cool the ion beam stochastically[7]. Similar to the traditional stochastic
cooling, the CEC can be described as correcting the beam center schottky noise or
equivalently correct each individual ion. As shown in Fig 6.1 (a), the schottky noise of
the ion beam center will modulate the electron beam density through the space charge
field in the modulation section. Then the electron beam density variations are amplified
by going through a section where the longitudinal beam instability taking place. Finally,
the amplified electron beam field interacts with the ion beam and the ion beam center is

corrected. Since

Eljapy’)= 22

the energy spread is decreased as the beam center is corrected turn by turn. This process
can also be understood from the point view of a single ion as shown in Fig 6.1 (b).
Considering an ion moving inside the electron beam, the electrons will rearrange
themselves and forms an electron cloud around the ion. The electron cloud density is then

amplified through the amplification section and meets the same ion in the correction
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Figure 6.1 (a) Schematic demonstration of the CEC set up: Schottky signal description.
(b) Schematic demonstration of the CEC set up: particle description (Taken from [19]).

section. The location of the ion with respect to the electron cloud can be adjusted
according to its energy through a dispersive section such that the electron cloud always
corrects its energy in the right direction. The effect from the electron cloud induced by

the ion itself added coherently while the effects from the electron clouds induced by other
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ions added incoherently. As a result, the ion’s energy is corrected after many turns and
the energy spread of the beam is reduced.

The content of this chapter is arranged as the following. In section 6.2, the
modulation process is studied analytically for various electron velocity distributions. It is
shown that analytic formula can be found for electron beam thermal distributions being
Lorentzian. For the Gaussian distribution, numerical solution is presented and compared
with the analytic solution. Section 6.3 shows an analytical approach of describing the
amplification process using the 1D FEL theories and Lorentzian energy distribution. Both
the energy spread and the space charge are naturally included into the formulation and

their effects are shown.

6.2 Ion Shielding In An Anisotropic Electron Plasma

Being an elementary subject of plasma physics as early as 1960s’, the shielding
effects of anisotropic plasma to moving ions become more interesting recently due to the
new concept of beam cooling, the Coherent Electron Cooling. As an effective way of
significantly increasing the luminosity of modern accelerators, CEC was proposed by Ya.
S. Derbenev in 1980 [7] and has recently been discussed by V. N. Litvinenko[8]. The
first process of CEC, modulating the electron beam, is realized by ion shielding, i.e. the
electron density response to moving ions. A few facts make the well established

asymptotic theory for slow moving ions [20-22] inapplicable to the process. Firstly, since
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the proposed interaction time of the modulation is only1/4 of the plasma oscillation, the
transient effects could not be sufficiently Landau damped and hence the system has not
reached its equilibrium yet. Secondly, the electron beam has very different longitudinal
and transversal thermal temperatures which make it an anisotropic system. Lastly, as the

thermal velocity of the ions is comparable to that of the electrons, the solution should also

apply to ions withy, ~ l<v2> As a result, a more generally applicable dynamical

description of the ion shielding in anisotropic non-equilibrium plasma is needed to
understand the physics of the modulation and estimate its efficiency. By solving the self-
consistent Vlasov-Poisson equations in the time domain, the exact analytic solution is
found for the Lorenzian plasma'?. For a rest ion, the analytic solution reduces to the well
known Debye screening formula atz — oo. In order to investigate the validity of the
analytic formula, the thermal assumption is then investigated by being compared with the

numerical solution of the Maxwellian plasma.

The content is organized as the following. In section 6.4.1, it is shown that the
linear Vlasov-Poisson equations are equivalent to an integral equation in time domain. In
section 6.4.2, the analytic solution is derived for two different types of thermal
distributions, the 2" power and 3™ power of Lorenzian distribution. In section 6.4.3, the
numerical solution for the Maxellian plasma is presented and compared with the analytic
solutions. It is shown that the 3™ power of Lorenzian distribution agrees better with the
numerical result and gives qualitatively correct dependence of damping rate and plasma

frequency on wavelength, especially at long wavelength region. We will also show that

'> The Lorenzian plasma refers to plasma with powers of Lorenzian form thermal distributions.
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the response of anisotropic plasma to a rest ion decays exponentially with distance as
long as the thermal distribution of the plasma has elliptical symmetry. The summary is

made in section 6.4.4.

6.2.1 Vlasov-Poisson Equations

The dynamics of collisionless electron plasma is described by the Vlasov equation
and Maxwell equations. If the variation of the plasma density is small compared to its
equilibrium background, one may ignore the higher order terms and describe the system
with linearized Vlasov equation.
¢E 0 (¥)=0, (6.1)

%ﬁ(x,v,z)wiﬁ(x,v,t)-

ox meg ’

where f;(X,7,¢)is the perturbation of electron density in the phase space and f,(¥)is the

thermal velocity distribution of the background which has uniform spatial distribution.
Assuming the thermal velocity of the electrons and ions are small compared with the
speed of light, the magnetic field may also be ignored, which reduces the Maxwell

equations to Poisson equation

§'E= pind()?7t)+pext(5é’t)' (62)
&

o

Considering the external electric field is caused by a moving ion with velocityv,, the

charge density in equation (6.2) is given by
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p(%,t)= Zed(3) - iel(%,1), (6.3)
where 7 (%,t)= I £i(%,9,)dv . Equation (6.1)-(6.3) form a self-consistent description of

the electron plasma driven by a moving ion, which are then Fourier transformed into the

wave vector Space as

%fl(/?i,tﬁ ik -5, (E,V,t)ﬂm%d)(l;,t)-(/; -%fo(ﬁ)] ) (6.4)
where
k)= = |z, -7 (k. (6.5)

is the Fourier component of the electric potential. Integrating (6.4) over the 3 dimension

electron velocities and assuming the zero initial conditions of the electron density
. ~(7 d =(r : .
perturbation, fl(k,0)= 0 and o fl(k,0)= 0, one finally gets an integral equation in the
wave vector space[23, 24]
t
ﬁl(k,t)= mj”ﬁl (k,tl)— Z, ktl = t)g(k(t1 = t))dt1 : (6.6)
0
where
— 1 = =\ i (¥ -
g(u):n—jﬁ)(x,v,t)e Gy 6.7)

In order to make any further analytical progresses, specific choices of the electron

thermal distribution have to be made such that equation (6.6) is analytically solvable.
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6.2.2 The 2™ Power of Lorenzian Distribution

Considering the electron plasma having the following thermal velocity distribution,

— nO 1+ (vx + va )2 + (Vy + Voy)z + (vz + vOz )2 ; (6 8)
7" B.B,PB. B B B ’ '

/(%)

where [

XY,z

are the parameters describing the 3 dimensional temperatures of the plasma

and v, is the ion’s velocity with respect to the electron plasma. The distribution (6.8) is

normalized to unity and is essentially the 2" power of Lorenzian distribution. Its Fourier

transformation is given by

7)= RS OVARA SV . (6.9)

Inserting (6.9) into (6.6) and multiply both sides of the equation by a common factor

e , one gets
H, (E,t)= w;j(tl - t)[I-NI1 (E,zl)— Z e e ]dtl , (6.10)
where
Ak)=ik 5, k.8 + k5 F + (kB.Y | (6.11)
and
()= (k6> (6.12)

Taking secondary time derivative for both sides of (6.10), one gets the following

inhomogeneous secondary ODE with constant coefficients

H,(f,0)= -2, (K 1)+ 0z, Y (6.13)
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Figure 6.2 Mountain Range Plot for the electron response ﬁe(l;,t)as a function of the

wavelength and time. The graph is for the ion velocity along the wave vectork .

The solution of (6.13) is composed of the homogeneous oscillation parts and the

exponential part from the inhomogeneous term. After considering the zero initial

conditions, ﬁ(]g ,0): 0 andﬁl(lg ,0): 0, the solution for 7, (Ig ,t) is ready to be obtained as

5 -

—~ w.Z p

n, (k,t): ”—’q{l O l:cos(a)pt)— 4&) . sin(a)pt)}} . (6.14)
o+ Alk @,

The second term in the bracket shows the transient plasma oscillation induced by the

presence of the ion. The oscillation is Landau damped after a few plasma oscillations and

only those with very long wavelength stays oscillating as shown in Fig. 6.2. The first

derivative of (14) reads,
ﬁl(l;,t): Zo, sin(a)pt)exp(/l(lg)- t). (6.15)

Fourier inversion of (6.15) gives the time derivative of the electron density variation.
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Figure 6.3 The Response of the 2™ Lorenzian plasma to an ion. The abscissa and ordinate
is for normalized spatial x and y coordinates in units of their Debye radius. The left graph
is for an rest ion and the right graph is for an ion with velocity 105, . The snapshot is taken

aty =7

(e Z. i d
nl(x,t):ﬂzr 1: 7 ( 2, (=, = 2WS1?(W_) v _ 2P (6.16)
ol oz \yr? + (X +V,,07) +(y+v0y1//)2+(z+v021//))Z

where the normalized variable are defined as y =w,t,r,,=p/0,,X, =x,/r,,and

Vo =V / B, Integrating (6.16) over time and taking into account the initial condition,

one gets the electron density variation as the following

L 7. 14 1 d
nl(x’t): . 2 (= — zWSlil(l//_) s — . - vP (6.17)
T errDyrDz 0 (l// +(x +V0xl//) +(y+V0yl//)2 +(Z +VOzl//) )Z

Equation (6.17) is essentially sum of a few sinusoidal integrals and no further significant
simplification can be made analytically. Fig. 6.3 and Fig. 6.4 show the numerical

integration result for (6.17). In Fig. 6.3, snapshots at i = 7 are shown for a rest ion and a

moving ion withv, =104, . In Fig. 6.4, a mountain range plot is shown for a moving ion
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Figure 6.4. Mountain Range Plot for the electron response 7,(¥,¢) as a function of the

longitudinal location and time. The graph is taken at the transverse location x = y = 0.3r,,.

withv, =54_. In case ofv, =0, andt — o, equation (6.17) reduces to the following

equilibrium solution,

i (5.0) = Z, l//sin(gy_)dg/
T Tpyp: (‘//2 ‘H”z) (6.18)
z | o |
=—’-:exp(—l’)

4717’0,er, N

where 7 = \/ (x/ T )2 + (y/ rD’y)z + (z/ Tp.s )2 . Equation (6.18) predicts that the electron

response decays exponentially with distance. When the 3 temperatures in each direction
are the same, equation (6.18) reproduces the well known Debye screening formula.
Figure 6.3(b) suggests that the charge distribution tends to concentrate in a smaller
cone as the ion velocity gets bigger. This effect can be shown by integrating equation
(6.17) over certain solid angle and radius as shown in Figure 6.5. The integration can be

carried out analytically and expressed into the following form,
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Figure 6.5. Integration volume (backward cone) of equation (6.19).

~

N, (O o) = [[ [ 1%, £ )edlyetz
Veone

-2z, (6.19)
- — IW Sin(l//)[[(emax ’ Fmax’ t) - I(O’ }_;max s t)]dl//
ﬂerrDyrDz 0
, where
IO T o) = i 7 In I_Fmaxj_mn(l—ﬁﬂﬂ,
( ) 41//2\70Z \/1 + \7022 sin? 0, [ [ 7 7
and

Fi(emaxﬂt) = l//|)70z cos emax ti V 1+ ‘7()22 Sin2 emax J

Figure 6.6 shows the numerical integration results of (6.19). In Figure 6.6(a) the total

electron charge induced by an ion moving with velocity v, = £, inside a sphere with
radius 7,, =2 is plotted as a function of time. Reaching its maximum after 1/4 ~1/2

plasma oscillations, the total induced charge around the ion almost keeps constant. The
velocity effects to the charge distribution are plotted in Figure 6.6(b). For example, as the

velocity increases to543,, 80% of the total induced charge are concentrated in the

backward cone with 6§ =7/5
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Figure 6.6 Integrated electron charge induced by a moving ion inside certain solid angle
and radius. (a) Total induced electron charge inside a sphere with radius 7, =2 as a

function of time; (b) Angular charge distribution. The abscissa is COS(7Z'— Gmax) and the

ordinate is £(4,,, )= % where the radial cutoff is 7, =5 and the snapshot are
W\

taken at w =27 .

One may notice that there are some drawbacks of the distribution (6.8). Although
the plasma oscillation and Landau damping is described in eq.(6.14), the wavelength
dependence of them are quite different from that of the Maxwellian plasma. Actually the
distribution (6.8) does not even define the rms velocity spread. In order to obtain analytic
results more realistic and closer to the Maxwellian plasma, the 3" power of Lorenzian

distribution is considered.
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6.2.3 The 3" Power of Lorenzian Distribution

The normalized velocity distribution of the 3" power Lorenzian distribution reads

~ 4n, (v +v, )2 (V), +V0y)z (v +v, )2 B
- 4 U F Vo 2 V) | 6.20
/&) ﬂzﬂxﬂyﬂz( e T T (620

The Fourier transformation of (6.20) is

(i) = (1+ R())exp(- R(#)), (6.21)

where R(u) = \/ (ux B. )2 + (uy ,By)z + (uz . )2 . Following the similar steps of the previous
section, one obtains the following 3™ order ODE with constant coefficients

Hilp)+ Hily)+ 2k - H (y)=ZkG~ix-v )exp|l-iz -7,k -p], (622)

wherek = (k.. J + (ki F +0r, P o 5= ns /B 4, 1B+ B and 7=k ().
In help of the initial conditions, H(0)=H'(0)=0 and H"(0)= Z,, equation (6.22) can be

analytically solved and the electron density response in wave vector domain is

Yo |,

. {1“ A e costrans 21 L35 )j-sm(m}},

1

(6.23)

where A is defined in (6.11) and 77, y,,7,, ¢, are functions of the wave vector defined as
1 1
vol)= (N2 +1/27 + k) - N2 +1/27 - k)?
1 1
yl(ié)s%[(\//? +1/27 + k) + (W2 +1/27 = k)*],
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2 ~(F\o =2 (=n)-7
=1- k)= 0.
) 3-iy-v,’ d ) 3.0 +1

Equation (6.23) has a few major differences compared with equation (6.14). Firstly,
the plasma oscillation frequency is now a function of the wavelength. Secondly, the

Landau damping rate is reduced especially at long wavelength since y,is always a

positive number and behaves as k'*at large k while l(lg ) linearly depends onk.
Thirdly, the factor 77 appears in the factor outside the bracket, which is 1/3 forv, =0.

This factor is important when one want to compare the results of different thermal
distributions. Lastly, there is a fast damping term appears in the bracket and its damping
is much faster compared to the Landau damping of the plasma oscillation. Fourier
inversion of (6.23) is too complicated to be conducted analytically by hand. The
numerical results will be shown in the following section where it is compared with the

Maxwellian plasma and 2™ power Lorenzian plasma.

6.2.4 Numerical Result for Maxwellian Plasma and Comparison

Maxwellian plasma is the most considered and more realistic plasma compared to

the Lorenzian plasma. The thermal velocity distribution of Maxwellian electron plasma is

W) 2
f(ﬁ):—gno exp —(Vx+vf'”) —(vy+vfy)2 —(VZJFVzOZ) (6.24)
(27) 00,0, 20, 20, 20
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Unlike Lorenzian plasma, it defines average value for any power of velocities and is
naturally reached through collision process. Unfortunately, analytic approach for
Maxwellian plasma dynamics is usually difficult. The solution of the integral equation
(6.6) has to be found numerically. Since equation (6.6) has no singularity at ¢ =t¢,, the
numerical solution is straightforward. After inserting equation (6.24) and carrying out the

integral for the inhomogeneous part, equation (6.6) can be written as

"
A6y )= [ ,f.2)-w(y - o)dr+ g(v), (6.25)
0
where
I-Nll(l;,t)sﬁl(lg,t)ex —ilE-ﬁOt),
W(r)z —T- exp(—%lzz -12) ,
and

_ = RE=N _ =
gly)= %{e-”%w (1 + i\/%vo z w(%}] e (1 + i\/gvo Pz w(z\/ik v+ %D} :

The variable y , k and v, are already defined in equation (6.22) and w(z) is the Faddeeva

function defined as w(z)= e"zzerfc(— iz). Equation (6.24) is the Volterra Equation of the

second type which can be solved simply by iteration. Fig. 6.7 shows the responses of the
2" Lorenzian, 3" Lorenzian and Maxwellian plasma to an ion moving with velocities

v, =0, v,=050,, v=0,and v, =30, . It is clear that they exactly overlap with each
other for v, =0. Since the normalized variables are used in the calculations, Fig. 6.7

also describes the anisotropic plasmas. As shown in equation (6.18), the analytic black

curve in Fig. 6.7 (a) is exponential decay, which suggests that the responses of the other
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two plasmas to a rest ion also exponentially decay regardless of being isotropic or not.
Actually as long as the thermal velocity distribution has elliptical symmetry, the response
of the electron plasma to a rest ion always exponentially decays with the distance. This

can be shown as the following. By making Laplace transformation of equation (6.4), the

electron density response in (lg , P) space can be written as

.5
P
“’f)j av{"(v)dsv
i, p)=—iZe. KT ik (6.26)
P > E';fo(‘_})

S I LA
k* I p+ik-v

d’v

where

i (k, p) = [ 7, (k,)e™""dt .
0

The electron response in the time domain is then given by inverse transforming (6.26)

according to the following formula
- 1 [OC+O,;, ~ :
(k0 =—— [k, p)e"dp. (6.27)
2722 —ioo+o
The integral in equation (6.27) is calculated by summing up all the residues at poles of
n, (lg , p) . All poles obtained from solving the dispersion relation
= 0 ..
>k Tfo(")
ov

1—i%~j dv=0, (6.28)

p+ ik -v
go to zero with ¢ — o and only the pole at p = 0 survives at equilibrium. As a result, the

electron response at equilibrium can be obtained by only calculating the residue at p = 0.

112



T T T T T T T T
= 2nd Lorentz. = 2nd Lorentz.
mmm 3rd Lorentz. mmm 3rd Lorentz.
aaa Maxwellian aaa Maxwellian
@ 17}
5 =
Q [}
o <
% )
g 5
= =
o O
1 1 1 1 1 1 1 1 1 1
-0 -4 -2 0 2 4 B -2 0 2 4
Distance z' Distance z'
(a) (b)
T T T T T T T T
2nd Lorentz. 2nd Lorentz.
mmm 3rd Lorentz mmm 3rd Lorentz.
aaa Maxwellian A:‘ Aaa Maxwellian
2 z 005 f“ A ]
— 172}
g g A,
3 o
© ° A
& 50
on =
5] <
S £
S @
© 0|
1 1 1 1 1 ~0.05 1 1 1
-0.05—/ P 0 2 4 215 ~10 _s 0 5
Distance 7' Distance z'
() (d)

Figure 6.7 The Responses of Electron Plasmas to An Ion with Various Velocities. The
abscissa is the longitudinal distance from the rest ion in units of longitudinal Debye
radius and the ordinate is the electron density response multiplied by the Debye volume.
The black solid curve is for the analytic solution of the 2™ Lorenzian plasma. The red
triangles are for the 3" Lorenzian plasma response and the blue crosses are for the

Maxwellian plasma. The snapshot is taken at @t =7 .

Assuming the thermal velocity distribution of the electron plasma has elliptical

symmetry, i.e.
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£0)=1,().

2 2
_ v Y
where y :{—x+—y+

B: B B

2
z

1/2
J , the integral in equation (6.26) for p =0 can be simplified

to

- 0 _
»? kgfo(v)

4np.p,B. _
L @yv=— | £V )dv . 6.29
Inserting (6.29) into (6.26), one gets
ikt > 0)= 7, M;P (6.30)

-1
where 5 = (477& B,B. J' 1 (V)dV] . The inverse Fourier transformation of (6.30) generates
0

7 (%,1)= xp(-R), (6.31)

L —e
47R, R, R,.R

\/;ﬁ 2 2 2

1/2
where R,, =-———and E:[ A A ] . By calculating 7 for all three

2 2 2
a)p RD,x RD,y RD,z

thermal distributions and comparing the results with equation (6.14) and (6.23), it is
verified that the formula of (6.30) is consistent with the previous calculations. Fig. 6.5

also suggests that forv, <o,, both the 2" power Lorenzian plasma and the 3™ power

Lorenzian plasma behave similar to the Maxwellian plasma but the 3™ power Lorenzian
plasma is apparently better than the 2" power Lorenzian plasma. For v, being a few o,
the response of the Maxwellian plasma is more localized than the Lorenzian plasmas

which can also be seen from Fig. 6.8. Although the response of the Maxwellian plasma to

an ion is difficult to be obtained analytically, asymptotic formula were derived both in
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Figure 6.8 Responses of the electron plasma to a fast ion: 2D Contour Map. The abscissa
is the longitudinal distance in units of Longitudinal Debye radius and the ordinate is the

transverse distance in units of transverse Debye radius. The top graph is for the 2" power
Lorenzian plasma and the bottom graph is for the Maxwellian plasma. The ion is moving

with velocity 5o,and the snapshot is taken at @, = 7 .

space domain and in the wave vector domain. It had been derived by Landau and other

authors in 1940s that the dependence of the plasma frequency and Landau damping rate

a)=a)P1/1+%k2r,§ , (6.32)
N8 (kry ) 2:(kn, ) 2)

for the isotropic Maxwellian plasma at limit k7, <<1. Fig. 6.9 shows the plasma

on the wavelength are

frequency and Landau damping rates for all three distributions at long wavelength limit.

The 3™ Lorenzian plasma is clearly much closer to the Maxwellian plasma at this limit.

At the short wavelength limit k7, >>1, the plasma frequency and Landau damping rate

are given by
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O=—=0,, 6.33
Edi o
7= kcf( )w,,, (6.34)
where 5(]; ) is implicitly determined by the following equation

£ expl&? /2)=ﬁ/€2. (6.35)

Since f(E) is a slow varying function, both the Landau damping rate and the plasma

frequency growth linearly with k. As shown in Fig. 6.9 (c) and (d), although the
behavior of the Lorenzian plasmas are very different from the Maxwellian plasma at
short wavelength, the 3™ power Lorenzian distribution is still closer than the 2™ power
Lorenzian distribution.

In space domain, the numerical solutions of the stationary electrostatic potential for
the Maxwellian plasma have been calculated by various authors[25-27]. In order to
compare our results with the previous numerical solutions, the electric potential must be

calculated. By combining equation (6.5) and equation (6.15), the time derivative of the

electric potential in k space is

d'D(Ig,t)= - Zia;"ze sin(a)pt)exp(i(l;)- t). (6.36)

&
By Fourier transforming equation (6.36) and taking into account the initial condition

D(%,0)=——"—

2 : |a , the electric potential induced by an moving ion in the second power
TTEy|X

Lorentzian plasma is obtained as
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Figure 6.9 Plasma frequency and Landau damping rate at long and short wavelength
limit. The abscissa is the wavelength in units of 1/7,. Graph (a) and (b) show the plasma

frequency and Landau damping rate in units of @,at kr, <<1. Graph (c¢) and (d) show
the plasma frequency and Landau damping rate in units of @, at kr, >>1. The solid red

line is for the Maxwellian plasma approximate formula, the blue dash line is for the 3™
Lorenzian plasma formula and the black dot-dash line is for the 2™ Lorenzian plasma
formula.

~ 2
B(5,1)= 2 s

Z'| T

dre, |x|

©« sin a) r |7c + 1701|
————arctan ,B— dr |, (6.37)
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Figure 6.10 Electric Potential along the moving direction for various ion speeds. The
abscissa is the longitudinal distance from the moving ion and the ordinate is the electrical
potential in units of Ze/r,. (a) shows the analytic results for the second power

Lorenzian plasma at y =60z and (b) shows the numerical results for the Maxwellian
plasma. The v,/ \/Eﬂe =1curve (red) and v,/ \/E,b’e =2 curve (green) curve are taken at
w =T and the v, /\/5,6’6 =0.3 curve (blue) is taken at ¥ =157

for g

.- = . Equation (6.5) can also be used to calculate the electric potential for the
Maxwellian plasma by the FFT technology as 7, (l;,t) has already been numerically

solved. The results of the induced electric potential at  >>1 are shown in Figure 8.

Figure 6.10 (a) shows the analytic result expressed in equation (6.37) for the second

power Lorentzian plasma and the snapshot of Figure 6.10 (a) is taken at w =607x.
Compared with the numerical results for the Maxwellian plasma[25-27], the results for
the Lorentzian plasma agrees very well for v, < ﬁﬂe and is more flattened for higher

velocities. Figure 6.10 (b) shows the FFT results for the Maxwellian plasma, which
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agrees very well with the previous results (Figure 7 of reference [26], figure 4 of
reference [27] and figure 9 of reference [25]). Since the Landau damping is slow for
relatively long wavelength, some small differences at the tail may still exist. As the
longitudinal range of the FFT calculation is limited by the memory of the computer and
solving the dynamical equation (6.25) for a very long time range is also time-consuming,

figure 6.10 (b) only shows results for relatively short time range andv, <24, .

6.2.5 Summary and Discussion

The dynamic model described in section 1 and section 2 depends on the thermal
distribution one chooses. This dependence seems to be weak while the ion is moving with

velocity v, <o, . As a result, the analytic formula obtained for the Lorenzian distribution

can describe the process with good accuracy. For fast ions, the effects due to the thermal

distribution become strong but for ion velocity up to a few o,, the formula obtained for

the 3" power Lorenzian distribution may still serve as an qualitative estimation.
Numerical solution for the Maxwellian distribution is straightforward under this model
and could be much faster than the Particle In Cell simulations. As shown in section 3, the
shielding effects for a rest ion sitting in anisotropic plasma seems to decays

exponentially.
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6.3 Amplification of Ion Shielding Signal in FEL (1D Calculation)

As the electron beam is modulated by the ion, the modulation has to be amplified
through some instability mechanisms. In this section, the instability is realized by a FEL

amplifier and the calculation under 1D FEL theory is presented.

6.3.1 Introduction

Assuming the velocity distribution of the electron beam is the second order
Lorentzian distribution, from equation (6.66), the initial current density modulation in the

lab frame is given by

zZiec ”I Esin&déE _ 639)
Traa.a, L ,Bct) - 2
&+ (x + VOxé:) (y + Vo»f)z ( Vozfj J

Z

Jilzt)=-

As the 1D FEL theories are well developed in the frequency domain, we will Fourier
transform (6.38) into the frequency domain and calculate the evolution for each
frequency component. Then we transform the results back to the time domain to get the
output of the amplified electron current density. In order to avoid the fast oscillating

factor, the Fourier transformation has been done according to the following formula

4 N
Ji(z0)=—[G(z0e™dy, (6.39)
2 -0
Ji(z.0)= j Ji(z.k )" (6.40)
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where y = (kw + k)z - ot , ]L'](Z,a)) = ei("+k“}7‘1 (z,a)) and 7}(2,(0) = J.j'l(z,t)e"(‘”dt )

6.3.2 Review 1D FEL Theory with Non-zero Initial Modulation

For a specific radiation/amplification frequency, the dynamics inside the FEL is
determined by the following Hamiltonian [28, 29]. The Hamiltonian is given by

@
2cy?

z

H=CP+

e P’ - (U(z)e”" + U*(z)e_“”)+ eJ‘a’l//EZ . (6.41)

The conjugate variable and its momentum is (1//,P) which are defined as,
P=£-¢&,,
v=kz+tkz—ot,
and the time variable is z, where & is the energy of the electron, &, is the average
energy of the total bunch, @ is the frequency of the considered Fourier component, U (Z)

is the complex amplitude of the effective potential of the particle interaction with the

electromagnetic wave, E_ is the longitudinal space charge field and &, is the wave

number of the FEL wiggler'>. The coefficients in the Hamiltonian is the detune of the

designed energy &,,

1 Please refer [29]  E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, The Physics of Free Electron
Lasers(Springer, New York, 1999). equation (2.6) for detailed derivation of the Hamiltonian (6.41).
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C=k,——,
2y

z

and the longitudinal energy is defined as
1B 1= Bl = (14K,
where the undulator parameter K is defined as

eB,

K

mck,,
The evolution of the electron beam is determined by the 1-D Vlasov equation,

0 OH 0 OH 0
—f+———f—-———/f=0.
8zf oP 61//f 61//an

From (6.41), we obtain the following results

a—H:C+ ?
oP cyl&,

P,

O p- ~iU(z)e" +iU"(z)e™ +¢E. .
oy

(6.42)

(6.43)

(6.44)

As we are considering one Fourier components with specific frequency, we can write the

distribution function into the following form,

f(l//apaz):fo(P)-l-}](sz)ei'// +J71‘*(P’Z)e—ix//’

(6.45)

where f,(P) is the equilibrium distribution and E(P, z) is the complex amplitude of the

perturbation. In order to have a solution for the Vlasov equation, the space charge force

must have the following form,

E.(z)=E.(2)" + E. ()™ .

(6.46)

Inserting equation (6.45) ~ (6.46) into equation (6.42), the linearized Vlasov equation is

obtained as the following
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0 ~ . @ = . ~\0 .
2 fl(p,z)ﬂ(mﬂpj TP UG -E) L =0, 64

Next, we will derive the relation between the longitudinal space charge and the current

density perturbation. In free space, the Maxwell equations are

9 - plzt) , (6.48)
0z &
and the 1D continuous equation reads
0 0
—plz,t)=——jlz,1). 6.49
= Plat)=——Jlz.1) (6.49)

Combining equation (6.48) with (6.49), one obtain the following relation

60, 10 10
——FE =——p(z,t)=———j(z,1). 6.50
ot g el ) o/ (6:50)

Assuming the space charge field solely comes from the perturbation, one gets
Ly =iﬁp(z,t)=—gij(z,z). (6.51)
Since the perturbed charge density is related to the perturbed current by
Ja0)= T + 7 () =—ece™ [Fi(P.2)dP+cc. 652)

, the complex magnitude of the longitudinal space charge field is related to the

distribution perturbation amplitude by
E.(2)= ), (6.53)

From (6.47) and (6.53), one has

;{fl (P,z)~ exp{i[C + c]/?)é‘o PJ2:|} = —exp{i(c + cy?é‘o P]z}[iU(z)-i— ll‘izczej;ﬁ) (6-54)
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Integrating both sides of equation (6.54) generates

pJ(Zv_Z)}[iu(zvp ; 71(2')@} 1z (P, O)exp{-l(c e

&y

H, (6.55)

fi(P,z =—J.exp{ (C+C}/ e

which is equation (2.52) of reference[29]. Integrating (6.55) over the energy P and

inserting (6.52) generates

Z(Z)=i”°ecidz'(U(zv) Na( J_Ldpexp{ (c+% PJ(Z'_Z)}%F(P). (6.56)

O

_ecJ. £(P0 exp{— l(c-ﬁ- e PJZ}JP

The effective potential is defined as (ref [29] eq.(2.7))

U(z)= ——eefl.(z), (6.57)

and the radiation field is related to the current density perturbation by (we assume that no

radiation field at the entrance of the FEL).

d = 0, ~
—E(z)=—7"— 6.58
4 PE)=5 006 (6.58)

, where 6, is the transverse angle of the electron velocity inside the undulator and is

related to the undulator parameter by 6, = 5 Inserting equation (6.57) and (6.58) into
Y

(6.56) and using the reduced variables as defined below,

- 12 \3 R
r:(m{ogsj, 2=, p=t
cydy PE,
2 .
znrc’ c-C/r, R = 247.270 . (6.59)
w j/zlAJ/l—‘

equation (6.56) can be written as (ref [29] eq.(2.19))
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;;E(Z):,Z[CF (E( )+1A2 diE ]deexp[(CnLPXz Z]a F(p)

L (6.60)
Nl(f’)exp[— z(é + ﬁ)f]df’

+ S
2¢,I' 2

where the following relation are used

~ @
F\P)=F
(P)=F(p) 2

~ Sy O
TP)=F()

esjo

&,C

If we define a reference electric field as E = , we obtain

J.dz( +1AziE jj.dPexp[(C+PXz z]aPF(j))

©

+E, ni Ijl (P)exp[— l(é + 15)2}1]3

0 —oo

Thus the equation for the radiation field in units of the reference electric field is

d 2,. Z o & ) A
EE(Z)z!dz (E( )+1A —E(z jdeexp[(C+PXz—z)]aP ( ) 661

©

L1 7(P0)exp [ ile + NP

0 -

, where E (z)= M The initial condition fl (13,0) can be obtained by the following

0

integral

T Sy, P0)e " dy .
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6.3.3 Equivalent Differential Equation for Cold Electron Beam

Considering F (}3): o (}3), the integral over Pin equation (6.61) is

[ dbexplic + Pz-2) ;3 5(B)=—i(z—-2)explic(2-2). (6.62)

Inserting (6.62) into (6.61), and multiplying both sides by &“ , one obtains

oxp [16 Y- —j (E(Z)HAZ d_ E(gv)j(gv_g)exp ¢ )]
0 dz' . (6.63)
+ — j 7.(P.0)exp [ iPz)ip
n() )
If we define
H(2)=E(2)e, (6.64)
and apply the following relation
L E(E) =< HE)-iCH ()
, eéquation (6.63) can be rewritten into
L @) e )= ”’(H(é')+ A2 e A Cn (gv)j(gv_g)
"z ] (6.65)

+ L [ 7,(.0)exp [-inz}ip
nO -
The second derivative of (6.65) with respect to Z reads
3 2
LoH () (O i ()= ()= R b () i3 CH ()

dz z oo . (6.66)
+ T _f 171 (P,O)exp [— iﬁf]dﬁ
0 -0
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Applying the following relations,

iH(s):ic‘efc‘fi(s)+ef@f§§(s),

dz 2
2 S a 2 o dr 2
;{2 H(Z)=-C2eE(2)+ 2iCe’CZ%E(2)+ o %E(é),
z z
d’ _AZiéfiQA_~A3iCA'zA£'A ‘AiCA'zAd_z'QA iCA'zAd_3£/A
yES ——H(2)=-3C% yE E(2)-iCeE(2)+3iCe S E(2)+e yES E(2)

, we obtain the differential equation for the radiation field,

B ()+2i6 L E(2)+ (A2 2)dAEA(ZA)
dz
A (6.67)

- ii(é)—nl—Tls2fl(P 0)exp [-i(p + ¢ P

53
z

, which is identical to Saldin’s result except for an inhomogeneous term caused by the

initial modulation'* (ref [29] eq.(2.57)).

6.3.4 Equivalent Differential Equation for Lorentzian Electron Beam

If we assume the energy distribution of the background has the following form

Flp)=L 1 (6.68)
& 1+ ]j

the P integral in eq.(6.61) becomes

'* This inhomogeneous term is claimed to be small in ref [30]. In order to study the detailed effects of this
term for the CeC purpose, one needs to solve for f(%,v_,¢)in the modulator.
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[ aPexpliC + PYe-2)| s F(P)=—ilz—2)explic(z-2) - la(z-2)

The integral differential equation is written to

d ﬁ(g):go(f)_ijdfv(ﬁ(a)nﬁp d E:(gv)j(gv_g)exp [ (Geic)e- 2]

dz dz'
, where
gl(2)= ni Tﬁ (B.0)expl-i(C + PENP . (6.69)
0 —o
Defining
H(2)=expllg +iCEJEE), (6.70)

and following the similar procedure as the last section, one obtain the differential

equation for H(Z)

2

d3
dz’

H(2)—(c}+ié)j

A2
z

HE) R, @) R Gric @)= e.) 67D
, where

2,(2)= nioz(g —iP} 7(P.0)exp|lg - iP)e}ip (6.72)
Defining C,, = C —i§, equation (6.70) and (6.71) become

H(2)=expliC, 2B (), (6.73)

d3
dz’

N oA dl N, r2 d A\ f2 A . .
H(%)- iC, dzTH(Z)+ A? EH(Z)— l[l + A’ C,, ]H(z): g,(2). (6.74)
Equations (6.73) and (6.74) have exactly the same form as (6.64) and (6.66). Thus the

equation of motion for the radiation field E(z) is
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3

~3
z

2. A d? 2, - N d 2,.
E(2)+2iC, deE )+( 2 —CE_,,Z) E(2)

(
= i§(2)+ nl—exp (— iéeffé)jy T f, (ﬁ,O)exp ["2 - iﬁé]d]s

0 —o0
Inserting C = C —ig back into equation (6.75), we obtain the differential equation of

the radiation field generated by a Lorentzian electron beam

3

A 2 A A A
E@)+ 26+ )5 E@)+ [R + (€4 a) [LEE)-iEE) o6

Z'\3
- nLT(q P 7.(P.0)exp [i(B + C Rl

0 -

Comparing equation (6.76) with (6.67), we see that the energy spread adds an additional

imaginary part to the detune C, which is responsible for the Landau damping of the

current density.

6.3.5 Solution of The Homogeneous Differential Equation

The solution of equation (6.76) has general solution parts from the homogenous
equation and the inhomogeneous part from the particular solution. The solution for the

homogenous equation

3 2

E@)+ 2(1‘@ + (j)j

~2
z

ﬁ(f){f\i, +(ié+c})z]%1§(2)—i§(2): 0 (677)

ZA 3
has the following form

E(2)= 4™ + A,e™ + A,e™ (6.78)
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Figure 6.11 Eigenvalues for the homogeneous differential equation (6.77) for A ,=0

andg =0. The green dot-dash curve and the purple dot-dash curve are the real and

imaginary part of the growth mode respectively. The dark blue solid curve and the red
solid curve are the real and imaginary part of the damping mode. The light blue solid

curve is the oscillating mode.

, where A, are the eigenvalues to be determined by equation

/13+2(¢j+ié)/12+[/A\2p+(q”+ié)1/1—i:0 (6.79)

, and the coefficients 4, are determined by the initial condition. The solution of equation

(6.79) can be expressed analytically as

where



a2:2(é+ié), alzf\2p+(é+ié)z, a,=—i,

S:(R+\/5)§, T:(R—\/B)%, Q:3al_a22’

9

_9aa,-27a,-2a,
54 '
Figure 6.11 shows the eigenvalues for A , =0 and ¢ =0 as a function of the detune C.

D=0’+R’, R

6.3.6 Small Energy Spread Approximation for 6}2 <<1

As one can see from equation (6.76), the inhomogeneous term is due to the energy

spread of the equilibrium distribution and the initial perturbation itself. If we assume the

energy spread is small enough such that .[132 f (lf’)dl3 <<1 andg’<<1, the

inhomogeneous part of the solution is negligible comparing with the homogenous part

and the coefficients A4, are determined by the following equation,

1 1
A=l 2 4| | SEO) (50
4) & & B)| g £0)

dz’
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Figure 6.12 Initial current density modulations for an ion moving with velocity
v, =0.54 where p._is the velocity spread of the electrons in co-moving frame. (a) the

current density modulation in time domain with the longitudinal Debye radius being
700nm . The abscissa is time in units of seconds and the ordinate is the current density
modulation. (b) the current density in frequency domain. The abscissa is the detune

C and the ordinate is the Fourier components of the current density at the corresponding
detune.

The initial condition of the radiation field is determined by the initial condition of the
current density modulation through equation (6.58). Inserting equation (6.38) into

equation (6.39) generates the initial current density modulation in the frequency domain

[,‘[%—k“‘ 7ka+(i%z§*fi )aw J

~ _ Zec T Esinée
Jl(x7y>z>a))_ 2m.a,a.0 au/.([ f¢(§)3 [1+awa(§)k§ (6.81)
, where a, = ;Zw and fL((f)z =& +(f+\7()x§)2 + (37+170y§)z. Figure (6.12) shows the
CYo

initial modulation of the electron current caused by a moving ion with velocity v, = 0.55.

and longitudinal Debye radius being 0.7gmm at the time domain and the frequency

A 2 A
domain. From equation (6.58), one gets the initial condition for %E (0), %E (0) and
Z Z
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Figure 6.13 The dependence of each factors of expression (6.87) on the detune C. (a) the
amplitude of coefficients A, calculated from equation (6.88) as a function of the detune’.
The red solid curve is for the oscillation mode, the blue solid curve is for the growth
mode and the purple dot-dash curve is for the damping mode. The green dash curve is the
real part of the growth mode; (b) the amplitude of the exponential factors e’ after =6
of propagation inside the FEL as a function of the detune C . The blue solid curve is the

growth mode, the red solid curve is the oscillating mode and the green solid curve is the
damping mode; (c) the amplitude of the eigenvlaue multiplying the exponential factor,

Ae™ after £ =6 of propagation in side the FEL as a function of the detune. The blue

solid curve is the growth mode, the red solid curve is the oscillating mode and purple
dash-dot curve is the damping mode. The green curve is the real part of the growth mode.

" There is a divergence of A around C =1.89 which is due to the degenerate of the eigenvalues as shown

in Figure 6.11. This divergence can be cured by rearrange the terms in (6.87).
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3 A

d—E (0) as the following,

&
%g(o):_eio - 27m0afa)azw Z[fsmgeﬁ - [1+a fl]dé: (€52
¢ _£(0)- i k), 6.83)
53 E0)=-C*F ;’Z £(0). (6.84)

Combining equation (6.82), (6.83) and (6.84) with the homogeneous differential equation

(6.77), we get the initial condition for the radiation field right after the electron beam

entering the FEL'®

E0)--ilis +a* L E ). (6.85)
z
Equation (6.82), (6.83) and (6.85) serves as the starting point of the radiation field and

their evolution are determined by the solution of the homogenous equation (6.78), which

can be written into the following matrix form,

E(2) M Y 1 1Y (iR +g?)

iAE(é) = A Al A | A A A 1 iE(o).(6.86)
dg 202 2ok okl 2 2 @ e dz

gy VT AT AT A A

dz?

' Since the electric field is normalized by E,, the factor 6 is hidden in the normalization. The

discontinuity of the radiation field comes from the discontinuity of &, but the current density is continuous
at the entrance.
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Figure 6.14 The amplified current density in the frequency/detune domain calculated
from equation (6.87) for Zz=8, ¢ =0 and A , =0. The abscissa is the normalized detune

and the ordinate is the current density in the frequency domain. The red solid curve is the
real part of the current density and the blue solid curve is the imaginary part.

From equation (6.58), the evolution of the current density in the detune domain, i.e.

frequency domain, is thus given by

52,0 )= —ecn |4, (€ (C PO + 4,2, (E €8 + 4,0,(C k¥ JEr(0. )

= [Al (@) + 4, (e (C ) + 4l h(Clen (é)f]j.l(o’é) (6.87)

, where A7(é ) are determined by

AY (11 1A +¢?)
al=l4 4 2 L (6.88)
4,) \4 A Z —iC

Figure 6.13 show 4, ¢"“and Ae™* as a function of the detune C. The long tail of figure

6.13 (c) is caused by the large imaginary part of the eigenvalue as ‘é‘ >>1, which is

related to the fact that the graph is plotted at ¢ = 0and A , =0. As there is no dispersion,

Landau damping or plasma oscillation for such a case, the initial modulation will just stay
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Figure 6.15 The evolution of the current density in an FEL. The abscissa are the time in
units meter. The electron beam is going left wards and the origin is when the
light/radiation field gets to the location. From up left to the down right, the plots shows
the evolution of the current density at different location of the FEL for z=1, 5, 8, 9, 13

and 15 respectively. As §=0and A , =0, the initial modulation at the entrance stays

unchanged.

on top of the amplified current density and thus left the initial broad band signal staying

in the frequency domain as shown in figure (6.14) (b). The current density in the time

domain is given by the inverse Fourier transformation (6.40). Since k= 2y? (IQW - é), the

integration variable in (6.40) can be changed to the detune C as shown below,
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Figure 6.16 Space charge and energy spread effects to the FEL amplification. The
abscissa is time in units of the resonant wavelength of the FEL. The initial electron
modulation locates at the origin of abscissa and the electrons are moving rightwards. The
ordinate is the amplitude (red solid curve) and the phase (blue dash curve) of the
amplified wave-packet at z=13. The three graphs on the left shows the energy spread
effects for ¢ =0.1, 0.2 and 0.3 with no space charge effects and the three graphs on the

right shows the space charge effects for A , =02, 0.4 and 0.6 with energy spread being
G=0.1".

71 (Z,t) _ %eﬂ;“é Tj“-l(é, é)eilé(éfcf)dlg
- (6.88)

0
A

T2y s o) (R (s AL () A
__78 e J-jl(Z,C)e dC

—00

'7 For parameters shown in table 6.1, Ap ~0.2 and §~0.15.
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Inserting equation (6.87) into equation (6.88) and carrying out the integration over C

generates the amplified current density in the time domain. Figure 6.15 shows the time

domain current density evolution from Z=1to Z=15with §=0and A ,=0. As

previously expected, the initial modulation stays unchanged. One can also see from figure
(6.15) that the wave-packet start to overtake the initial modulation afterZ ~ 8. In SASE,
this distance corresponds to the built-up time. Figure 6.16 shows the envelope and its
phase of the amplified wave-packets, which is obtained by removing the fast oscillating

factor as shown below

Frmtoe2:1) =~ 22 I? e.Cpeikac (6:89)
Energy, MeV 136.2 ¥ 266.45
Peak current, A 100 Mo, NN 700
Bunchlength, psec 50 D, CIN 5
Emittance, norm Smmmrad | ay 0.994
Energy spread 0.03% Wiggler Helical

Table 6.1 Designed Parameter Of CeC Amplifier for eRHIC (Taken from

(19D

As one can see from figure (6.16), the energy spread reduces the amplification
amplitude significantly due to Laudau damping and the initial modulation also disappears
after certain distance of propagation due to the same reason. The group velocity of the
wave-packets depends on the space charge and energy spread as well. As the space

charge factor increases from 0.2 to 0.6, the slippage of the peak changes about 25%.
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6.3.7 Summary and Discussion

There are two major approximations made in above calculations. The first one is
ignoring the diffraction effects due to the finite transversal beam size and the other
approximation is the Lorentzian energy distribution. In order to include the diffraction
effects and consider the more realistic energy distribution, 3D simulation codes are
usually used. However some useful scaling law such as the dependence of the group
velocity on the energy spread and the space charge can be obtained through this

analytical approach.
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