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Abstract. Polarimeters using the proton carbon elastic scattering process in Coulomb Nuclear
Interference (CNI) region were installed in two RHIC rings. Polarization measurements were
successfully carried out with the high energy polarized proton beams for the first polarized pp
collision run. The physics principles, performance, and polarization measurements are presented.

INTRODUCTION

The RHIC polarimeters play a key role in the RHIC spin program, providing fast
feed-back to the accelerator, and providing measurements of the beam polarization
to the experiments. In planning for the RHIC spin program, it was recognized that
the traditional method of proton polarimetry at intermediate energy (at the AGS, for
example) would not be sufficiently sensitive at RHIC energies. This method uses the
empirical analyzing power of proton-proton elastic scattering at -t=0.15 (GeV/c)2, where
there is an observed maximum independent of energy. This analyzing power falls as
1/pbeam, and is about 1% at the RHIC injection energy of 24 GeV/c.

For RHIC polarimetry, we have selected the reaction proton-carbon elastic scattering
at very small momentum transfer, -t=0.006 to 0.03 (GeV/c)2. This t-range is in the
Coulomb nuclear interference region (CNI), where quantum electrodynamics predicts
a significant analyzing power at the peak (0.04), which is essentially constant over the
entire RHIC energy range. The figure of merit for proton-carbon CNI scattering, cross-
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section� (analyzing power)2, becomes greater than the traditional proton-proton elastic
scattering polarimeter for energies greater than about 5 GeV/c.

The QED prediction for the CNI analyzing power is based on the interference of the
electromagnetic spin flip amplitude, which generates the proton’s anomalous magnetic
moment, and the hadronic non-flip amplitude. This QED prediction is modified by a
potential contribution from an hadronic spin flip amplitude which is not presently cal-
culable. Indeed, from our initial studies of this method of polarimetry near the RHIC
injection energy, we have found a significantly lower analyzing power than that pre-
dicted from QED alone. The hadronic spin-flip amplitude is expected to diminish with
increasing energy, so we expect to have a reasonable sensitivity for polarization mea-
surement over the RHIC energy range, possibly increasing with energy.

The theoretical uncertainty from the unknown hadronic spin flip amplitude leads to
the requirement that the proton-carbon CNI polarimeters must be experimentally cal-
ibrated over the RHIC energy range. At 22 GeV/c this has been done to�31%, by
making simultaneous measurements of the CNI asymmetry, and the beam polarization
using a proton-proton elastic polarimeter. This calibration is ultimately tied to proton-
proton elastic measurements with a polarized proton target where the target polarization
was measured independently. It is planned for the near future to calibrate the CNI po-
larimeters at RHIC at higher energy by measuring the beam polarization at injection (24
GeV/c), accelerating to a new energy, measuring the CNI asymmetry, then decelerating
back to 24 GeV/c. If the polarization is found to be the same at 24 GeV/c, before and
after the down-ramp, we can use this polarization value at the new energy to calculate
the analyzing power. If we measure a lower polarization after the down-ramp, we will
develop bounds on the analyzing power at the new energy.

For the year 2004 we plan to install a polarized hydrogen jet target in RHIC. The
target polarization will be measured to about 2% using a Breit-Rabi polarimeter. The
knowledge of the target polarization will be transfered to the beam polarization using
proton-proton elastic scattering in the CNI region. For p-p elastic scattering, the analyz-
ing power is the same, whether the beam or target is polarized. The beam polarization is
then used to calibrate the RHIC proton-carbon polarimeters. Our plan is to reach a�5%
calibration of the p-C CNI analyzing power, by 2005.

We chose proton-carbon CNI over proton-proton CNI for the RHIC polarimetry be-
cause an ultra-thin carbon ribbon target was available [1], which would allow the low
energy carbon recoils to escape the target. The target would survive heating from the
RHIC beam, provide sufficient luminosity for a quick precision polarization measure-
ment, and be sufficiently thin to avoid pile-up of events in the detector at the same time.
For a thicker target, only surface scattering would produce observable recoils in the CNI
region, and the target would fail on the other points as well. A hydro-carbon target, for
p-p CNI, would not survive the RHIC beam. A polarized hydrogen jet target, which will
be used for calibration, is technically difficult, and is very thin. The luminosity avail-
able for a polarized jet is orders of magnitude less, and not practical to use as a fast
polarimeter. A polarimeter based on an unpolarized hydrogen jet was considered, but is
also technically complicated, without providing a major advantage over proton-carbon
CNI.

The choice of CNI scattering offers several very clean experimental advantages.
The recoil (carbon for the RHIC polarimeters, proton for the polarized jet calibration
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FIGURE 1. The schematic geometry layout of the silicon detectors inside the 15cm radius RHIC beam
vacuum pipe. The polarized proton beam direction is into the paper, and the carbon target is represented
by the vertical line at the center of the vacuum pipe.

experiment) exits at nearly 90Æ to the beam, an angle which changes only slowly
with energy. Therefore, the same recoil detectors cover the entire RHIC energy range.
Furthermore, the recoils are at very low energy so that a time of flight measurement
can be made, relative to the rf-bunched beam. The relationship between the velocity and
energy of the recoil identifies the mass of the recoil. The CNI reaction is two orders of
magnitude larger in cross section than nearby inelastic reactions. Finally, the slow recoil
arrives at the detectors well after prompt background, which is timed with the rf-bunched
beam.

In the following sections we describe the RHIC polarimeters and the measurements
during the 2001-2002 RHIC run, the first run of the first polarized proton collider.

EXPERIMENTAL SETUP

The RHIC polarimeters are located near the 12 o’clock intersection region, with separate
polarimeters in each beam, referred to as the Blue and Yellow beams. A schematic of
the polarimeters is shown in Fig. 1. The RHIC polarized proton beam passes through an
ultra-thin carbon ribbon target, and carbon recoils from CNI scattering are observed in
six silicon strip detectors placed as shown.

Very thin carbon ribbon targets have been developed at IUCF [1]. A typical target
is 2.5 cm long, 3.5-µg�cm2 thick (150 Å) and 5-µm wide. The target is mounted on
a mechanism which rotates into the beam, with a choice of 3 vertical and 3 horizontal
targets. The silicon detectors have twelve 12 mm� 2 mm strips, for a 24 mm total
width. The six detectors are mounted inside of the vacuum chamber with readout pre-
amplifier boards directly attached to the chamber detector ports through vacuum feed-
through connectors. Figure 2 shows a scatter plot of time of flight versus energy for one
silicon strip in the polarimeter. The silicon detectors are 15cm from the target, and the
RHIC bunch length was about 3ns for this run, which is from the commissioning run in
2000 [2]. The inset in the figure shows the mass distribution derived from velocity and
energy (note that the Time-of-flight in the figure includes an offset of 40ns). The carbon
andα peaks are clear, with little background under the carbon peak.
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FIGURE 2. (a) The time of flight is plotted as a function of kinematic energy of the detected particle.
(b) Sub-figure shows the projected mass distribution. A Carbon mass peak (11.18 GeV�c 2) is clearly
separated from an alpha mass peak (3.7 GeV�c2).

The beam polarization is measured by counting the number of events in the carbon
band in each strip versus the azimuthal angle of the strip around the beam (Fig. 1).
A vertical polarization generates a left-right asymmetry in the detectors and a radial
polarization generates an up-down asymmetry.

The rates are very high, so we chose a readout system without dead time based on
wave form digitizers (WFDs) [3]. The WFDs consist of a high frequency video ADC
chip (used for laptop screens) and a Xilinx FPGA. The waveform from each strip was
digitized every 2�4 ns, and pulse height and time of flight, compared to the RHIC rf
clock, was determined in real time, and compared to a look up table which accepted the
carbon band (as in Fig. 2). On-board scalers kept the number of events for each strip, and
for each beam bunch. The 55 beam bunches of polarized protons in RHIC for the 2001/2
run, spaced 212ns apart, alternated in polarization sign. Therefore, the on-board scalers
collected data for both signs, and for bunches set up with zero polarization, for each
strip. The WFDs were introduced for the 2001/2 run and 48 strips were read out, 8 for
each detector (Fig. 1). Also, the orientation of the strips for the left and right detectors
(Fig. 1) were set up with the strips perpendicular to the beam direction, to measure
scattering angle. The 45Æ detectors were oriented along the beam direction to reduce
the azimuthal acceptance for each strip, reducing the rate compared to the 90Æ central
strips. For the 2001/2 run, we typically had 4�1012 protons in each ring, and 2�107

carbon elastic events were collected in about 20 seconds, with the target then rotated out
of the beam. The data were then transfered to a PC, the asymmetry and various monitor
asymmetries were calculated, and the result was sent automatically to the accelerator and
experiments in minutes. A detailed description is given in [3], including results from a
dedicated polarimeter run.
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FIGURE 3. Measured physics asymmetries along with the polarized proton intensity as a function of
the beam lifetime for a typical fill (Jan. 13th, 2002 fill 2212). Upper (Lower) figure shows Blue (Yellow)
ring. Closed points represent the vertical asymmetryεX and the open points show the radial components
εY ; the scale is found at left axis. All the measurements are taken at 100 GeV/c store except for the first
Blue measurement, i.e. run 669 was taken at injection energy. The solid curves represent the number of
total protons in the ring with the right-handed axis displaying its intensity scale.

POLARIMETER PERFORMANCE

Figure 3 shows polarization measurements for a typical fill. We plot the least square
fit to the data for the six detectors (48 strips), with both� and� polarized bunches.
The plot shows the raw physics asymmetry, referred to later asε, uncorrected for
analyzing power. Either a vertical polarization is assumed, with a (sin φ) dependence, or
a radial polarization with a (cos φ) dependence. Acceptance and luminosity asymmetries
generally cancel in this fit. Ordinarily the measurements were taken at injection energy,
right after the acceleration to 100 GeV/c, then every two hours during the store at flat-
top. In some cases the injection energy measurements for the Yellow ring were omitted
in order to expedite the acceleration. Although the intensity dropped during the store, the
vertical polarization asymmetries (closed points) were non-zero and stable. The radial
polarization asymmetries (open points), which should be zero, fluctuated around zero.
Each measurement point contains 2�107 carbon events corresponding to approximately
10% relative error for a 20% polarization.

Many systematic error studies have been carried out. Referring to Fig. 1, the 90Æ

detectors are sensitive to vertical polarization, and the 45Æ detectors can be used to
measure vertical polarization (left-right asymmetry) and radial polarization (up-down
asymmetry).

The results for left-right asymmetry between the 90Æ and 45Æ detectors were compared
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FIGURE 4. Distributions of the difference of asymmetries measured by the 90Æ and the 45Æ detectors.
Left (Right) figure shows a Blue (Yellow) ring.

(after correction by
�

2 for the smaller analyzing power of the 45Æ detectors). These were
calculated using a square root formula which cancels luminosity asymmetries for� and
� polarized bunches, and cancels left-right or up-down detector asymmetries, to third
order [4].

The distributions for the measurements for the two beams of this difference of asym-
metries, divided by the overall statistical error of the difference, is shown in Fig. 4.
A Gaussian fit of the distribution givesε90�45�σstat� � 0�25, σdist� � 1�11 for the Blue

beam measurements, andε90�45�σstat� ��0�02,σdist� � 1�10 for the Yellow beam. We
also measured up-down asymmetries, using the 45Æ detectors. Since no radial polar-
ization was expected (with two Siberian Snakes per ring, the stable polarization di-
rection is vertical), the up-down asymmetry directly measures a false asymmetry. A
Gaussian fit to the up-down asymmetries givesε45vert�σstat� � 0�16, σdist� � 1�11 for
Blue andε45vert�σstat� � �0�30, σdist� � 1�43 for Yellow. A cross asymmetry was also
formed from the 45Æ detectors, which must be a false asymmetry. This distribution gave
εcross�σstat� � �0�17, σdist� � 1�30 for Blue andεcross�σstat� � �0�32, σdist� � 1�26 for
Yellow.

In another approach to study systematic errors, the results for different bunches were
compared by normalizing the number of events in each detector for each bunch by the
number of events for each detector observed for a standard or "good bunch". This nor-
malized distribution for each bunch was fit with a (constant � ε � sinφ) distribution
whereφ is the azimuthal position of each detector, andφ � 0 is vertical (Thereby al-
lowing an asymmetry from vertical polarization). Theχ 2 for this fit showed that a small
number of bunches had anomalous behavior and these bunches were removed from the
polarimeter analysis. The remainingχ 2 distribution was broader than the standardχ 2,
indicating an additional average systematic error of about 0�5�σstatistical . Anomalies
for bunches were also studied by calculating specific luminosities for each bunch at the
polarimeter (Ntotal�Ibunch whereIbunch is the bunch current from the wall current mon-
itor), and also at the experiments (Ntotal�IBlueIYellow). Ntotal refers to polarimeter total
counts, and to experiment counts in a luminosity monitor respectively. The anomalous
bunches from these analyses matched well (for STAR, see [5]) and they were removed
from the polarization and the asymmetry analyses.

Finally, the systematic error from bunch dependent effects was explored by mixing
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��� and��� bunches randomly into two groups, ”�” and ”�”, each with zero (or small)
polarization. These groups were used in place of the real��� and��� groups to calculate
asymmetry using the square root formula. This was done 1000 times for each run, and
these false asymmetries from mixed bunches are compared to the real asymmetries
in Fig. 5. The false asymmetry distributions are characterized by a Gaussian with
σ f alse � 1�12 for the blue beam andσ f alse � 1�11 for the yellow beam. The statistical

error for these asymmetry measurements (both false and real) isσstat��ε� � 2�8�10�4.
When we compare the different studies of systematic errors in the polarimeter mea-

surement, which are not independent, we find that each indicates a systematic error
of (0�5 to 1)�σstat�, for each measurement. The false asymmetries appear to fluctuate
around zero, with average offsets as large as 1/3 of the statistical error. We have not
identified the origin of these systematic errors, and this is a work in progress.

We have decided to use, as the systematic error for the asymmetry measurement,
σsystematic�ε� � 2�8�10�4. This is equal to the statistical error for a single measurement.
This estimate is larger than that given in the studies above, but it reflects our uncertainty
on the origin of the observed systematic errors. This systematic error is roughly�10%
of the measured asymmetry. As we will discuss, the uncertainty of the analyzing power
is larger than this.

We have also studied backgrounds, pile-up, and variations in the�t definition from
energy loss in the dead layer of the silicon. Backgrounds from inelastic reactions appear
to be small (� a few %), from observing the apparent signal-to-background in the carbon
mass peak of Figure 2(b). Target empty data were not collected for this run, but were
a small fraction in the first AGS pC CNI experiment [6], 3%. Another background
under the carbon peak, which could change with the fill or time, is de-bunched beam.
In this case, the time-of-flight vs. the beam rf is spoiled. We studied five fills with
unusually large de-bunching (� 20%) and observed the effect, but also that there was
little background under the carbon peak,� few %. Pile-up, two pulses in the same strip
from the same crossing, can also confuse the time-of-flight vs. energy correlation. We
estimated pile-up at� 1%. Finally, a stable�t acceptance is necessary because the
analyzing power is a sharply varying function of�t. We estimated, based on fits for the
dead-layer thickness for each silicon strip, a variation inAN of ��4%.

We can estimate the stability of the polarimeters against varying backgrounds, pile-
up, or�t acceptance by comparing results for the same beam for different polarimeters.
This is done when we compare the 45Æ and 90Æ asymmetries in Fig. 4. Pile-up is also
tested because the rates for the central strips for the 90Æ detectors are about twice that of
each strip for the 45Æ detectors. Our estimated systematic error therefore includes these
effects.

The analyzing power at injection energy is determined from Ref. [6], for the�t ranges
of the RHIC polarimeters. These were�t � �0�7 to 3�0�� 10�2 �GeV�c�2 for the
blue beam polarimeter, and�t � �0�6 to 2�7��10�2 �GeV�c�2 for the yellow beam
polarimeter. The difference are due to the silicon dead layer thicknesses. The values for
AN are,AN�blue�� �1�27�0�40��10�2 andAN�yellow�� �1�33�0�41��10�2, where
the errors are the linear additions of the statistical, raw asymmetry systematic, and beam
polarization errors from Ref. [6].

Referring to Fig. 5, the measured beam polarization at injection (24 GeV/c) was,
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FIGURE 5. Physics asymmetries (solid histograms) are compared to the artificial asymmetries from
mixed bunches (open histograms). The measurements are selected from long store (� 4 hours) fills after
Jan. 5th. The above (below) left plot shows the asymmetries at 24 GeV/c, while the right plot shows for
100 GeV/c in blue (yellow) beam.

Pblue�24GeV�c� � ε�AN�blue� � 0�21�0�005�0�02�0�07 andPyellow�24GeV�c� �
ε�AN�yellow� � 0�22� 0�007� 0�02� 0�07. The first and the second errors are the
statistical and systematic errors on the raw asymmetry respectively, and the third error
is a scale error from the fractional error onAN. These results use the most stringent
bunch selection, based on the polarimeters, STAR, and PHENIX data analyses of beam
monitors.

We were not able to calibrate the polarimeters at 100 GeV/c for this run. There are
theoretical arguments thatAN should change only slowly with energy over the RHIC
range [7]. However, an experimental calibration is required, and is planned for future
runs.If we assume the same analyzing power at 100 GeV/c as for 22 GeV/c, we find
from Fig. 5,Pblue�100GeV�c� � 0�11�0�002�0�02�0�03 andPyellow�100GeV�c� �
0�16�0�002�0�02�0�05.

ISSUES AND PLANS

There are several concerns that must be resolved before next year. One is the system-
atic errors that some bunches contribute to create the false asymmetry. From data, some
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bunches were observed to have unphysical ratio between six detectors. The understand-
ing of their mechanism and criteria to discard them is needed. Another issue is the bunch
by bunch polarization. Our data for the bunch by bunch analysis is limited by statistics
from the previous runs. Further study on this issue is still in progress. High statistics
measurements are expected for the coming run. The last concern is the serious gain
drops of the silicon strip detectors. There were significantly large leakage current due
to silicon radiation damage which effectively reduces the bias voltage on silicon that af-
fects the signal shape. The replacement of the silicons and hardware improvements are
planned.

For the future run, determination of the absolute analyzing power at 100 GeV/c
is a crucial thing to be done, since our knowledge on the analyzing power of CNI
polarimeter is limited to near the injection energy (22 GeV/c). Absolute calibration
using the polarized hydrogen jet target is planned and is in preparation towards the first
operation in 2004. For the moment, a calibration using a down ramp is adopted as the
second best way. As a procedure, the usual polarization measurements are performed
at injection, after ramp to 100 GeV/c, then after down ramp again. If the polarization
is found to be the same at 24 GeV/c, after the down ramp vs. at injection, we can use
this polarization value at 100 GeV/c to calculate the analyzing power at 100 GeV/c.
If we measure lower polarization after the down ramp, we will develop bounds on the
analyzing power at 100 GeV/c.

Finally, in the next run we hope to improve the pC CNI calibration by using a new pC
CNI polarimeter in the AGS, calibrated to p-p elastics in the AGS internal polarimeter.

SUMMARY

The RHIC pC CNI polarimeter proved itself in the successful first polarized proton colli-
sion run 2001/2. It worked beautifully throughout the run period. Reliable high statistics
(20� 106 events) measurements were carried out in 1 minute measuring periods, ow-
ing to the successful operation of newly adopted wave form digitizer modules. The po-
larimeter results were broadcast to the experiments immediately after the measurements.
Two Siberian snakes per ring worked well, and stable proton polarizations at 100 GeV/c
were measured with little or no loss in magnitude over the store. Further detailed off-line
analysis is in progress and interesting challenges are expected for the up coming run.
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