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Spallation Neutron Source complex

• A $1.4 billion, 7-year construction project due June 2006

• Collaborated by six national laboratories, built at Oak Ridge
– Argonne, Brookhaven, Jefferson, Berkeley, Los Alamos, Oak Ridge

– At 1.4 MW beam power and 1.5x1014 particle per pulse, it will a 
high-power, high-intensity accelerator facility
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Evolution of the beam-power front
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Vacuum requirements
• Pre-injection transport line (HEBT)

– Pave < 5x10-8 Torr
– Required by H- stripping due to residual gas molecules (σ~1/β2)
– Beam loss limit: < 10-6 per meter

• Accumulator Ring
– Pave < 1x10-8 Torr for design intensity of 1.5x1014 proton per pulse
– Required by residual gas ionization due to proton beam, ion 

desorption & pressure runaway, and ionized electron production
– Capable of high-pressure operation (10-6 Torr) for beam scrubbing

• Ring-to-Target transport (RTBT)
– Near ring: Pave ~ 1x10-8 Torr, to avoid interference with ring 

operation
– Near target: Pave < 1x10-6 Torr, for reliable operation of Harp profile 

diagnostics
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HEBT (220m, including 3 dump 
lines)

P < 5x10-8 Torr
For H- stripping:
σ ∝ 1/β2 ≈ 1x10-18 cm2

(40%H2/40%H2O/20%CO)

⇒ 0.3 nA/m ≈ 0.3 watts/m
@ 2 mA x 1 GeV (2 MW)

⇒ <30 mR/hr @ 1 ft
(4 hrs after 100 day operation)

Acceptable for hands-on 
maintenance

HEBT

LDump
SCL

MomDmp

IDump

Interface to 
3 dumps (2 kW – 200 kW)
SCL, ECC/ESC, Collimators, Diag.

ECC

ESC

Colli

HEBT Pressure Distribution
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(Courtesy H. Hseuh et al)
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4 Arcs x 34m, 4 SS x 28m

isolatable by all-metal gate valves

Pavg <1x10-8 Torr

σi ≈ 6x10-19 cm2 (res. gas ionization) 

for 40%H2/40%H2O/20%CO

⇒ ~3x10-3 ionization/p.msec smaller than other 
source of e-

TiN Coating of all chambers w/ ~100nm to reduce 
SEY to ≤ 1.9

Conductive coating of inj. kicker ceramic 
chambers (~0.04 Ω)

TiN coating of ext. kicker ferrites

Arc

Inj.

Collim.

RF+Diag.

Ext.

Arc

Arc

Arc

Accumulator ring

(Courtesy H. Hseuh et al)
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Pressure Profile at RTBT-Target Interface 
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(Courtesy H. Hseuh et al)
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Primary concern: uncontrolled beam loss 
• Minimize uncontrolled beam loss for hands-on maintenance

– 1 Watt / meter loss of beam power
– 1 mSv / hour (100 mrem/hour) activation level

• 1 W/m loss in linac; 10-3 loss in ring; >90% cleaning efficiency
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Uncontrolled loss 
during normal operation
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0.910-4all ringCollimator inefficiency

2.53.7x10-5injection foilNuclear scattering at foil

0.31.3x10-7injection dipoleH- magnetic stripping

4.53x10-6collimatorEnergy straggling at foil

201.3x10-5collimatorExcited H0 at foil

2,0001.9x10-3collimatorRing beam halo
Power [W/m]FractionLocationMechanism

(N. Catalan-Lasheras et al)
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Source of beam loss
• High radio-activation at injection, extraction,collection

– AGS:  up to 10 rem/hour at localized area

• High beam loss
– FNAL Booster (30 - 40%): ramp tracking, debunching-

recapturing, transition, aperture!
– AGS/Booster (20 – 30%): pushing record intensity
– ISIS (~15%): injection capture, initial ramp
– PSR (0.3% Full energy accumulation): injection loss

(1) space-charge tune shift (0.25 or larger) & resonance crossing         
(2) limited geometric/momentum acceptance                       
(3) premature H- and H0 stripping and injection-foil scattering                    
(4) errors in the magnetic field and alignment                  
(5) instabilities (e.g., electron-cloud instability)                                            
(6) accidental beam loss (e.g., malfunction of the ion source/linac & 
misfiring of  ring extraction kickers)                          
(7) beam-halo loss during fast extraction.
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Low-loss design philosophy

• Localize beam loss to shielded area 
– 2-stage collimation: HEBT, Ring, RTBT
– 3-step beam-gap chopping/cleaning: LEBT, MEBT, Ring

• A low-loss design
– Matching between linac structures; space charge effects
– Resonance minimization; Magnet field compensation & correction
– Proper lattice design with adequate aperture & acceptance
– Injection painting; Injection & space-charge optimization
– Impedance (extraction kicker) & instability control (e-p)

• Flexibility: 
– Adjustable energy (+/- 5%), Variable tunes (H 1 unit, V 3 units), 

flexible 3-D injection painting; adjustable collimation; foil  
interchange

• Accident prevention: 
– Design redundancy: immune to front end, linac & kicker errors
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Normal & fault condition protection

• Linac halo: adjustable 
foil scraper in HEBT

• Linac energy tail:
scraping at high-
dispersion  location in 
HEBT

• Linac gap residual:
beam-in-gap kicker or 
momentum collection 
during initial ramping

• Linac malfunction:
scraper in HEBT

• Ring halo:
two-stage collimation

SNS ring and transport
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Beam-loss localization Ring primary scraper

• “Sacrifice” collimation region for the rest

• Two-stage system, efficiency above 90%

• Needs a large vacuum-pipe aperture and 
a long straight section

collimator in HEBT

(Courtesy H. Ludewig et al)
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Secondary collector design
• Length enough to stop primary protons (~ 1 m for 1 GeV beam)

• Layered structure (stainless steel particle bed in borated water, 
stainless steel blocks) to shield the secondary (neutron, γ)

• Fixed, enclosing elliptical-shaped wall for operational reliability

• Double-wall Inconel filled with He gas for leak detection
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Ring Lattice
FODO arcs & doublet straights

• Matched, hybrid lattice
– FODO arc:

easy-to-implement 
correction system, 
moderate magnet 
strength

– Doublet straight:
long, uninterrupted 
straight

» Improved 
collimation efficiency

» Robust injection

• Zero-dispersion injection
– Independent painting in 

the transverse & 
longitudinal directions



Jie Wei, Dec. 2003, BNL 18

Remote handling

Remote vacuum clamp

• Overhead, around-the-ring crane
• Quick handling fixtures incorporated 

into shielding/absorber design
• Remote vacuum clamps;  remote 

water fittings
• Passive dump window & change 

mechanism

Collimator remote water fitting

HEBT collimator & shielding

(Courtesy                 
G. Murdoch et al)
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Quick disconnect flanges, clamps & seals

250mm to 360mm Φw/Helicoflex Seal
· Diamond gasket w/ internal springs
· Flange has O-ring groove 
· Low sealing torque 20 ft-lbs
· ~ 6mm gap for seal insertion
· Easy assembly by one person
· ~ 4 minute assembly time
· Light weight Al chain

250mm to 360mm Φ w/ Al diamond
· Seal w/ knife edge, Al Chain ~ 8 lbs
· Low sealing torque 22 ft-lbs
· ~ 6mm gap for seal insertion
· Moderately difficult for one person
· ~ 5 minute assembly time 
· Flange surface & seal may be damaged

<250mm Φ w/ CFX Flanges/ Chain
· Durable Cu seal, SS Chain
· No knife edge on seal or flanges
· Medium sealing torque  62 ft-lbs
· ~ 3mm gap for seal insertion
· ~ 5 minute assembly by one person
· Moderately heavy chain ~ 22 lbs

Gaols: Reliable, ease of assembly, 
light weight, low torque, cost

(Courtesy H. Hseuh et al)
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Major sources of electron cloud
• Proton beam loss, especially 

at a shallow grazing angle

• Stripped & scattered electrons

• Gas ionization

• Beam-driven multipacting
(courtesy P. Thieberger et al)



Jie Wei, Dec. 2003, BNL 21

Electrons from collimator surface

– Designed to absorb 2 – 10 kW (0.1% -- 0.5%) proton beam loss
– Possible saw-tooth surface complicated by proton stopping distance

Rely on two-stage collimation for a large impact distance
Use clearing solenoids

(courtesy H. Ludewig, N. Simos)
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Stripped electrons (Meng, Jackson, Brodowski, Lee, Abell …)

(injection chicane #2)

simulation

measurement

– 2 kW of stripped electrons must be 
properly collected 

– Carbon-Carbon block on water-
cooled Cu plate; reduced 
backscattering

– Window/video monitor
– Tapered magnet ends
– Dedicated clearing electrode (10 kV) 
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Ionization and desorption
• Electron production due to ionization is proportional to vacuum 

pressure, average beam current, and ionization cross section

– Molecular density ρm=3.3x1022 m-3 at 300 K
– Ionization cross section σion=2 Mbarn = 2x10-22 m2

– Pressure P [Torr]

• Rate of ion or electron desorption is proportional to the number of 
ion or electron hitting surface – resulting in pressure run-away

e
PI

dtds
d ionme σβρλ

=
2
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Beam-induced multipacting

Captured electron

Long proton bunch (~170m)

Secondary electrons

Tertiary electrons….

Vacuum Chamber Wall

Lost proton
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proton-electron yield

e -

Head of proton bunch:
captures electrons

Tail of proton bunch:
repels electrons

Repelled electron

electron-electron yield

(R. Macek, D. Danilov, M. Furman, M. Pivi …)
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Effects of electron clouds in SNS Ring
• Electron neutralization, tune shifts, and resonance crossing

• Transverse (horizontal or vertical) instability

• Associated emittance growth and beam loss

• Vacuum pressure rise

• Heating & damage of vacuum chamber

• Interferences with diagnostics system
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Tune-shift & the Pacman effect
• Electron neutralization causes 

positive tune shifts on trailing-
edge particles

• For given space-charge tune 
spread at injection (typically 
0.2), the electron tune-shift if 
enhanced by factor γ2 -- may be 
important at a high injection 
energy

• May keep on losing trailing-
edge particle upon resonance 
crossing – the Pacman effect

• Require detailed evaluation of 
neutralization level in proton 
beam

(courtesy A. Fedotov)
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Simulation of electron production 

• SNS: electron-cloud tune-shift ~ 0.4 ηe,peak:  +0.04  (~ 0.4?) 

(courtesy M. Pivi, M. Furman)
within vacuum pipewithin vacuum pipe within beamwithin beam
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Mitigation measures
• Suppress electron production

– Tapered magnets for electron collection near injection foil; back-
scattering prevention

– TiN coated vacuum chamber to reduce multipacting
– Striped coating of extraction kicker ferrite (TiN)
– Beam-in-gap kicker to keep a clean beam gap (10-4) 
– Good vacuum (5x10-9 Torr or better)
– ports screening, step tapering; BPMs as clearing electrodes
– Install electron detectors around the ring
– Two-stage collimation; winding solenoids in the straight section

• Enhance Landau damping
– Large momentum acceptance with sextupole families; high RF 

voltage; momentum painting
– Inductive inserts to compensate space charge
– Reserve space for possible wide band damper system 
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Goal: low SEY, good adhesion and low outgassing Q
Use Magnetron DC with permanent magnets 

higher sputtering rate due to dense plasma

Bake & coat @ 250 C to ~ 100 nm of TiN 
to minimize impurity & improve adhesion

Need uniform gas flow along the length 
to get correct stoichiometry (0.95 – 1.03)

Surface coating

SEY of Recently TiN-Coated Chambers
CERN AT-VAC B. HENRIST 23/5/2003
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• SEY of SS > 2.5
• TiN coated at low pressure ~ 1.9 – 2.2
• TiN coated at high pressure ~ 1.5 – 1.8

SEY of SNS coating samples measured 
by CERN & KEK

(Hseuh, He, Todd, Hilleret, Sato …)
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Electron-confining solenoids
• Using solenoids to reduce electron 

multipacting in straight sections 
(collimation section)

• Efficiency studied
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Clearing electrodes
• Under strong beam potential (~10 kV), 

how does weak clearing field perform?

• Floating-ground BPM serve as clearing 
electrodes (up to +/- 1 kV)

• Dedicated electrode (10 kV) at injection
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Summary

• In a high-intensity ring like SNS, beam loss is of primary concern. 
Multi-location, two-stage beam collimation plays a crucial role

• Electron cloud is one of the intensity limiting mechanisms at the SNS 
ring. Mitigation measures like surface coating, solenoid confinement, 
and electrode clearing are expected to be highly effective


