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Introduction
Halo definition: Lacking or controversial.
Halo origin: Initial distribution

Halo growth: Collective motions and nonlinear resonances, collisional effects.

Halo test particles in KV beams stronlgy affected by mismatch oscillations.

Linacs: (ADS) short bunches 3D dynamics, few FODO cells ( ~ 10%).
Rings (SIS-100) long bunches, 2D dynamics, 10% ~ 10® visited FODO cells

Initial distribution

KV matched Kv mismatched Kv mismatched
with satellites

No halo No Balo Halo



Halo dynamics

ADS linac We have developed 2D and 3D models for test particles dynamics.
Core field: analytical or PIC solution of Poisson-Vlasov based on FFT

Analysis of nonlinear resonances based of frequency map : tune footprints,
resonace charts, invariant actions plots. Mismatch dominates.

Diffusion: resonance crossings due to mean field,

Halo thermodynamics
Mixing property of full hamiltonian H likely to hold.

Relaxation to Gibbs ensemble implies Maxwell Boltzmann for single particle
distribution, equipartition of quadratic degrees of freedom.

Kinetic theory Boltzmann or Landau assumptions need to be checked.



Randomness Fluctuations of physical (small angle collisions) or nu-
merical (psedoparticles number in PIC) origin leads to diffusion.

Numerical randomness in PIC codes can be controlled.

Physical randomness due to collisions, is unavoidable and leads to the
Maxwell-Boltzmann relaxation.

Relaxation We propose here a a molecular dynamics approach to investigate
the relaxation, check scaling laws and limits of kinetic theory: Poisson-Vlasov-
Fokker-Planck equation
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Noise error in PIC. Left: linear emittance growth for a PIC solver. High perveance: 128x128
Fourier components and 2.510%,510%, 10° 10° . Center: slope of emittance increase de/dsocN ™!

Right: electric field error. Fraction of occupied cells 7% .
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1. The 2D model (coasting beam in costant focusing)

Longitudinal speed wvg > vr transverse speed.

The 2D approximation assumes coherence along 2z : particles organized in
parallel wires: mass m , charge ¢ per unit length.

Ratios: ¢/m = e/m, . Total charge per unit length Q@ = Ng=1I/vy fixed.
Cell length =1 m , core radius R~1 mm .

Control parameters. The model depends on two control parameters: the bare
tune wg and the perveance £
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Equations of motion For the 2D model

d’z; 2 13 N Ty — T d?y; 2 § al Yi — Yj
J#i v J#i 4

where N e number of pseudoparticles (wires).

Scaling law Letting N, be the number of protons per unit length. The density
is pp, = Np/(mR2) , the specific length is £ = p~1/3 The number N s of
wires is equal to the number of particles in a cilinder of height ¢

N phys = Nyl = N/% (nR?)!/?

For Np = 10/ mm we obtain £= 3x107® mm and N phys ~ 3x10° .

Relaxation times From simulations depends linearly on N . We prove this
scaling holds within Landau’ theory. Hence

N
Tphys = —52 > 7(N)




The Hamiltonian for the 2D model reads
N
H=> HY
1=1

where H() is the Hamiltonian for particle i

oyl €

2 2
Pei TPy Wy 9 + 2

HO — 1740

The electric potential for particle ¢ splits into two parts (mean field and
collisional)
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where Rp is the Debye radius.

Continuum limit The collisional component vanishes in the limit N — oo in
the framework of Landau’s theory.



2D Debye shielding A small perturbation to a uniform distribution is balanced
sel-consistently by the thermal fluctuations. The potential V of the perturbed
field satisfies

eV Vv
AV = —4nNe(ps — pos) = —4mpo s lexp <— kBT> — 1] ~ 1y
D

The solution of the 2D Poisson equation is
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Asymptotic behaviour The decay is exponential with the Debye length Ap

V(r) = 2Q Ko (L) A2,
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2. Mean field equations

Neglecting the collisional component the potential of the mean field is a solution
of the Poisson equation

AV = —4rmp, ps(z,y) = / p(z, Dz, Y, y) dpz dpy

where p. 1is the space density. The phase space density is a solution of the
Liouville equation with the mean electric field
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Uniform space distribution

The electric field is linear and the potential within the cilinder is
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The KV distribution Gives uniform space and momentum distributions

w €w
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Maxwell Boltzmann distribution

This is is the canonical ensemble self consistent distribution
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and V has to determined solving the Poisson equation with initial condition
V(0)=V'(0)=0
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3. Simulations and collisional effects

Integration methods

Runge Kutta of order 4 (5) with variable time step: 4 (6) evaluations.
Symplectic Runge Kutta of order 4 with constant time step: 4 evaluation.

Stoerm method with variable time step: 1 evaluation.

Field computation

Computational complexity C(N) oc N? reduced to

C(N) o< Nlog N

by multipolar expansion of far field, continued fraction reconstruction, hyer-
chical space splitting. Requiring 10~% accuracy

Low N If N <10% direct computations convenient: N = 103 time 0.02 s.

High N For optimal N > 103 Linear rise : N = 10° time 2 s.
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Running times ¢=1
Low resolution: N = 100 steps/cell as Vlasov ( As=1 cm )

Hard collisions unresolved.

N =103 t cpy = 2 sec/cell t cpy = 1 hour up to relax. ( s, = 1500 )
N = 10" t cpy =20 sec/cell t cpy = 4 days up to relax. ( s = 15000 )
N =10° t cpv = 200 sec/cell t cpy = 1 year up to relax. ( s = 150000 )

High resolution: N = 10000 steps/cell ( As =0.1 mm )

Hard collisions resolved. ¢ cpy increased by 100
Initial distribution Was chosen as a matched or sightly mismatched KV

Check-points Conservation of total energy and angular momentum.
Relaxation to a self consistent Maxwell-Boltzmann distribution. Thermalization
of horizontal and vertical temperatures. Landau’s kinetic theory comparison.
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Radial density s=0 Radial density s=6000

0.2 0.2
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Space density for a symmetric focusing for particles without hard core at s=0 (left)
and s=6000 (right). The parameters are wo=1 (rad/m), £€=2 and e=1.08 (mm mrad). The
core radius is R=1.84 mm. so that Ap=R/5=0.382 mm. The red curve is the self consistent

Maxwell Boltzmann distribution
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Energy density s=0 Energy density s=6000
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Energy density for particles without hard core at s=0 (left) and s=6000 (right). The red

curve is the self consistent Maxwell Boltzmann distribution
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df/dv
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Distribuzione modulo velocita’ particelle

Distribuzione modulo velocita’ particelle

1.8e+03
i 1.2e+03]
] >
9
L = L
L 0.6e+03L
' " : . 0
0 0.7e-03 1.4e-03 2.1e-03 0

\Y

0.7e-03 1.4e-03 2.1e-03

\Y

Momentum density for particles without hard core at s=0 (left) and s=6000 (right). The

red curve is the self consistent Maxwell Boltzmann distribution
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Hard core No hard core

18 | 18

0 S 150 0 S 6000

Relaxation to equilibrium The x2 for the discrepancy of the phase space distribution p
with respect to the equilibrium Maxwell Boltzmann distribution is shown for the case with a

hard core (left frame) and without hard core (right frame)
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Mismatch The x? for the discrepancy of the phase space distribution p with respect to
the equilibrium Maxwell Boltzmann distribution is shown for the case with a hard core (left

frame) and without hard core (right frame)
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Temperature
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Thermalization for asymmetric focusing: Bare phase advances wg;=0.9, wgy=1.1

(rad/m). Perveance ¢=2 , tune depressions o,=0.7, 0,=0.6 . Particles used N=500 , rms
emittances e;=1, ¢,=0.3 (mm mrad) . Letting (p?)=kpT, and (p2)=kpT, we plot

Ty (8)/T%(0), Ty(s)/Tz(0) . After the relaxation s>s one has T,=T, .

rel
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4. Comparison with kinetic theory

The collisional effects can be treated by assuming that the relevant contribution
comes fom binary collisions.

Boltzmann equation It is obtained by truncating the BBGKY hierarchy.

Exact for hard spheres in the limit N — oo, 7y — 0 with r% fixed. The

kinematics of binary collisions is pot

P 1
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p1OUt:P‘|‘p P2 out ZP—p

2 2 P
out 2

P

The Boltzmann equation reads 2

dp
“F Hl =
% o H] = J(e,p 1) .

where the collision integral is

Center of mass frame

do
J(r,pa2,t) = N / P2 —p1 7 lp(r, p°" ) p(r, P> ) — p(r, p1) p(r, p2) ] db dp:
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Landau’s equations

Assuming the binary collisions are small angle frequent and istantaneous thay
can be treated as a random process.

Let the changes of position and momentum in the interval As be given by

H H
Ax = 86—p As Ap = —66— As+ (Ap). collisions

The master equation reads

8p 0?
. D;;
Os a apzap] ( J 10)

1,j=

where H is the mean field Hamiltonian

2 | .2 2,2
pzy +Pp 7+
H = x2 Y 4wl 2y —{—%V(w,y) AV:—47r/pdp

and the r.h.s. is the contribution of collisions

Ap Ap; Apy,
K= (2P Dy = ( 2Bi2PE
<As> 20 * < As >



Final result

After integrating over the center of mass scattering angle © we obtain

K(p2) = —8p2

where [ is a positive coeflicient

8= g/ﬂw dp? dr (sz(pg,rzjs)) % /0% d¢p(ao(p) —al(p)) (1— g—: cos¢)

and the distributions are

The momentum is p = (p% + p% — 2p1po COS ¢)1/2

(Y 5(p? — w’r? — we) KV

7 p(p?, %) = ¢ B p’ _W(Q) r? 4+ EV(r)
eXp( szT) eXp( T )
\ 2kpT Z

r

MB

where we have kpT = we/4 .
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Cross section It is computed for the cutoff potential

Vir) = —% log% (A —r)

The asymptotic expression of the cross section valid when ¢/NE < 1 is

do S &€ 1
%—2Aﬂﬁ(®_®max) ®max—ﬁ7

where E = p? and and ¢~ 1'/2 = 1.5 , see quadratic approximation to b(©) .
From this approximation it follows that

271' 2A 27.‘. 1 A
Ap) = oo(p)-01(0) = [ (1-cos@)o(@,p)d0 = o [ j6de =T,
0 0

max

Asymptotic drift .
The asymptotic drift is an average on
No the cross section and for £/N — 0 ;
52 3 N
" hys = 00
/8 5 phys N phys
0
0 0 0.005
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©O/0 2
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Blue curve: impact parameter b versus ©/© max - Red curve: parabolic approximation
b=1—c(©/O max )®> where 1/4/c=1.52 . The parameters are E=0.1, (=1, N=10° so that
£/(NE)=10"*% .
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Relaxation Assuming that D(s) = eA~** the linear fit to &(s) = log D(s)

A=25x%x10"% N = 4000 A=5x10"% N = 2000 A=10"2 N = 1000
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Decay of &(s)=log D(s) where D is the distance in L? mnorm of the distribution p(p,s) from
the asymptotic Maxwell-Boltzmann distribution for the same perveance &£=1 bare tune wo=1
and particles number N=1000 red, N=2000 blue, N=4000 green. Fast integration.
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Comparison with simulations

The relaxation time is estimated from the Langevin equation with averaged drift
and diffusion coefficients.

1/2 dw

T; = p; pi = —w’z; — (B)pi + (D) s

Justified in early stage when p ~ p kv

{(z — (z))*) = 4<tz>5 [1 — 2Pt (1 + gsin(wt))]

Plot )\* : cutoff A = RKV

15
average on r up to R ms = RKV/\/Q .
Choose A = R pepye = 0.29 Rkv ©
average up 3 R .ms BON

O
s @symp  — % = % = 1500 wvs fit 1800
initial decay 28 = 1.3 x 1073 vs fit 8 x 1074 5
2 Log N 4
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Conclusions

The 2D model is proposed to investigate the spilling and rise of Maxwellian
tails

Optimal algorithms of Nlog N computational complexity have developed
and will be parallelized.

Relaxation to Maxwell-Boltzmann follows an expontial law e~#% | mismatch
oscillations damp and thermalization (in asymmetric case) occurs.

Kinetic theory developed for 2D shows that 8 o< A¢2/N in agreement with
simulations.

Perspectives

Collisions 2D Detect the weight of hard and multiple collisions on test particles
comparing Langevin equations and direct simulations N = 10% ~ 10° .

Mean field 2D Criterion to choose the PIC parameters and control the nu-
merical noise.
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