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1- Equipartition, a fundamental concept for thermodynamical systems 
 
 

Basic courses of “thermodynamics” 
“Each degree of freedom in a gas has the same mean energy kT/2” 

Theorem quite intuitive : 
Each degree of freedom having excess energy share it with others through multiple collisions 

Do not apply to degrees of freedom unable to share energy through collisions 
 
 

A “degree of freedom” is not a mechanical system and as such cannot have a mean energy ! 
 

 

“If a system described by classical statistical mechanics 
is in equilibrium at the absolute temperature T, 

every independent quadratic term in its energy has a mean value equal to kT/2” 
 

Clear limits for the validity of the equipartition theorem : 
-1- The system must be relevant of the classical statistical mechanics 

-2- The system must be in equilibrium at the absolute temperature T 
(Maxwell-Boltzman velocity distribution) 

-3- The theorem apply to “independent quadratic terms of energy”, 
i.e. to linear oscillations and not to nonlinear oscillations in the general case 
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The concept of equipartition is unfortunately often used out of its scientific base 

 
 

Beam dynamics 
not 

Beam thermodynamics 
 
 

BEAM DYNAMICS : 
EMITTANCE EXCHANGES DUE TO COUPLING RESONANCES 

 
 

- space-charge forces induce coupling resonances 
 

- these space-charge induced coupling resonances 
are leading to emittance and halo exchanges. 

(known in circular machines) 
 
 

Take into account that nonlinear space-charge forces induce 
both tune spreads and excitation of coupling resonances 
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2-  Coupling resonances for beam with space charge 
 
 

2-1- Definition of the parameters 
 

σox  and  σoy :  phase advances / unit length at zero current 
 

σx  and  σy :  phase advances / unit length with space charge 
 

ηx = σx / σox  and  ηy = σy / σoy  :  tune depressions 
 

α =  σy / σx  :  “resonance” ratio for resonances of the type α σx - σy = 0 
αo =  σoy / σox  :  zero current tune ratio 

 
η = ao / bo  :  beam size ratio with ao and bo the matched beam rms radii 

in x and y directions respectively 
 

εx = ao
2 σx = π ao a’o  and  εy = bo

2 σy = π bo b’o  :  rms emittances 
(a’o and b’o  :  matched beam rms velocities) 

 
T = a’o2 / b’o2  :  energy ratio ( T =  εx σx / εy σy ) 
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2-2- Analytical study of the coupling resonances 
 

Historically mainly done for circular machines 
In the case of couplings induced by perturbing fields resulting from imperfections on the 

magnetic elements (skew quadrupoles ... ), fields from solenoids (detectors, electron cooling 
...), fringe field of the quadrupoles ... 

 
Few on couplings induced by space charge in synchrotrons 

 
 

Generic 2D equations of motion for a particle subject to such a coupling “force” are : 

d2x/ds2 + σx
2 x = Fcx(x,y,s) 

d2y/ds2 + σy
2 y = Fcy(x,y,s) 

General form of the perturbation “force” Fc(x,y,s) described by a series with terms : 

δlmn xl ym cos(n ω s) 

The resonance conditions can be expressed by 

i σx  + j σy  = n ω   with   i, j, n = 0, ±1, ±2, ±3, ... 
i  + j    =   the order of the resonance 
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The case of a linear coupling ( σx - σy = ω ) 
 

Linear perturbation force of the form : 
Fcx(x,y,s) = δ y cos(ω s)        Fcy(x,y,s) = δ x cos(ω s) 

 

 
 

The linear coupling forces can be associated to the potential : V(x,y,s) = - δ x y cos(ω s) 
odd symmetry  →  coupling mode sometime called “second order odd mode” 
The equations of motion can be integrated assuming δ small with respect to σx,y

2 
d2x/ds2 + σx

2 x =  k y0 cos(σy
 s) cos(ω s) 

d2y/ds2 + σy
2 y =  k x0 cos(σx

 s) cos(ω s) 
 

The resonance conditions are : 
σx - σy  =  ± ω    and    σx + σy  =  ω 
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The σx + σy = ω “sum resonance” leads to an unstable motion in both planes 
(unbounded particle trajectories) 

With Ex and Ey the “emittances” described by the single-particle trajectories 
Ex - Ey (s) = Ex - Ey (s=0) remains constant 

but Ex and Ey are unbounded 
 

The motion is not unstable for the σx - σy = ± ω “difference resonance” 
beating in amplitude between the x and y motions of the particles 

Ex + Ey (s) = Ex + Ey (s=0) remains constant 
with exchanges between Ex and Ey (stable but coupled motion) 

 
 

NOTA : the other second order mode  :  V(x,y,s) = - (δx x2 + δy y2) cos(ω s) 
The “second order even mode” is not a coupling mode 

even if sometime considered in coupling resonance studies 
 

It corresponds to envelope oscillations induced by a mismatch 
“breathing mode” when δx and δy have the same sign 

“quadrupolar mode” when δx and δy have opposite signs 
Leading role of the half integer resonance 
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Higher-order coupling resonances 
 

The equations of the trajectories are linear 
just because the nonlinear terms have been neglected   (H. Bruck) 

 

V(x,y,s) = -V0 Σij ( kij xi yj ) cos(ω s) 

Second, third and fourth order coupling resonances 
associated with a given coefficient of the perturbing potential for ω = 0 

 

V coefficients Excited 
coupling resonances 

α =  σy / σx  

k11 x y σx –  σy = 0 α = 1 2nd order odd 

k12 x y2 σx – 2 σy = 0 α = 1/2 3rd order even 

k21 x2 y 2 σx – σy = 0 α = 2 3rd order odd 

k13 x y3 σx – 3 σy = 0 α = 1/3 4th order 

k31 x3 y 3 σx – σy = 0 α = 3 4th order 

k22 x2 y2 2 σx – 2 σy = 0 α = 1 4th order 
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Non-linear couplings induced by the space-charge forces 
 

B.W. Montague, “Fourth-order coupling resonance excited by space-charge forces in a synchrotron” 
CERN 68-38, October 1968     (CERN-PS) 

J-L Laclare, G Leleux et A Tkatchenko, “Non linéarités de charge d’espace” 
Laboratoire National Saturne, GOC-GERMA, 74.166/TP24, décembre 1974    (SATURNE II) 

 
 

Even density distributions    space-charge “perturbing” potential = 
 

V(x,y) = V0 ( k20 x2 + k02 y2 + k40 x4 + k04 y4 + k22 x2 y2 + ... ) 
 

Example : the space-charge potential resulting of a Gaussian distribution : 
V0 = - ρ0 a b / (4 ε0 )         k20 = 2 / a(a+b)       k02 = 2 / b(a+b) 

k40 = -(2a+b) / 3a3(a+b)2      k04 = -(2b+a) / 3b3(a+b)2       k22 =  -2 / ab (a+b)2 
a and b = semi-axes of the elliptical cross-section 

 
The space-charge potential is limited to the fourth order 

(higher order have negligible effects) 

The total perturbation Hamiltonian can be spilt into 2 terms : 

∆H = ∆H0 + ∆H1 

with      ∆H0 = k20 x2 + k02 y2      and      ∆H1 = k40 x4 + k04 y4 + k22 x2 y2 
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- Remark 1 - ∆H0 = k20 x2 + k02 y2  is associated to linear part of the space-charge forces 
induces the incoherent tune shifts ∆σx and ∆σy 

∆H0 =  k20 Ex / 2 σx  +  k02 Ey / 2 σy  when the high-frequency oscillating terms are eliminated. 
The phase advances with space charge are then given by : 
σx = σ0x + ∆σx    with    ∆σx =  δ(∆H0) / δEx =  k20 / 2 σx    < 0 
σy = σ0y + ∆σy    with    ∆σy =  δ(∆H0) / δEy =  k02 / 2 σy    < 0 

 
- Remark 2 - ∆H1 = k40 x4 + k04 y4 + k22 x2 y2 gives the first nonlinear terms 

responsible of an amplitude dependence of the tunes : 
δσx = δ(δHcw) / δEx = A Ex + B Ey          δσy = δ(δHcw) / δEy = B Ex + C Ey 

with    A = 3 k40 / 4 σx
2    B = k22 / 4 σx σx     and     C = 3 k04 / 4 σy

2 
 

                                        1 /2  

      G au ss        K V  

                                        1 /3  

                             η = 0 .5  
                

                                         1/2 
         Gauss         KV 

                                         1/3 

                                η=0.1 
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- Remark 3 - k22 x2 y2 of ∆H1 is the lowest order term of the coupling force induced by SC 
Even density distribution  The higher order coupling terms have the form k2n 2m x2n y2m 

They result of the non-uniform character of the charge distribution 
They are always present, even for a beam of circular cross-section 

 

V coefficients Excited coupling resonances α =  σy / σx  
k22 x2 y2 2 σx – 2 σy = 0 α = 1 4th order 
k24 x2 y4 2 σx – 2 σy = 0 

2 σx – 4 σy = 0 
 

α = 1/2 
 

6th order 
k42 x4 y2 2 σx – 2 σy = 0 

4 σx – 2 σy = 0 
 

α = 2 
 

6th order 
k26 x2 y6 2 σx – 2 σy = 0 

2 σx – 4 σy = 0 
2 σx – 6 σy = 0 

 
 

α = 1/3 

 
 

8th order 
k62 x6 y2 2 σx – 2 σy = 0 

4 σx – 2 σy = 0 
6 σx – 2 σy = 0 

 
 

α = 3 

 
 

8th order 
k44 x4 y4 2 σx – 2 σy = 0 

2 σx – 4 σy = 0 
4 σx – 2 σy = 0 
4 σx – 4 σy = 0 

 
 
 

α = 1 

 
 
 

8th order 
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- Remark 4 - The coupling forces are more and more determinant for the beam dynamics 
as the beam cross-section asymmetry increases (“flat beam”) 

 
 

Example of Gaussian distribution : 
 

Ratio of the 4th order coupling force over the linear part of the space charge force : 
 

Cx = 2 k22 y2 / k20             Cy = 2 k22 x2 / k02 
 

⇓ 
 

Cx = -b / (a +b)           Cy = -a / (a+b) 
at the position x = a / 2 , y = b / 2  

 
Independent of the beam cross-section (S = π.a.b) 

but strongly dependent on the asymmetry 
 
 

k = a / b        0.1 0.2 0.5 1.0 2.0 5.0 10.
Cx  0.91 0.83 0.67 0.5 0.33 0.17 0.09
Cy  0.09 0.17 0.33 0.5 0.67 0.83 0.91
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- Remark 5 – The studies are done for coupling resonances 
excited by the cw component of the perturbing force (ω = 0) 

 
- For a matched beam the period of envelope oscillation is the lattice 

the coupling resonance conditions for a particle is 
i σpx  -  j σpy  = 2π n 

 
High-intensity accelerators usually designed with : 

40° <  σ0x, 0y  < 90°    and    ηx,y > 0.5    ⇒   20° <  σx, y  < 90° 

Phase advances per focusing period of the particle in the range : 
20° <  σpx, py  < 90°      ( 0.05 < νpx,py < 0.25 ) 

The lowest order coupling resonance is then for i > 5 with j = 2 and n = 1 
leading to possible excitations through resonances higher than the 7th order 

known to have negligible effects on the beam dynamics. 
 

THE FOCUSING SCHEME HAS NO EFFECT 
Demonstrated by 3D PIC code simulations 

 
 

NOTA for the “sum resonances” i σpx  +  j σpy  = 2π n which lead to unbounded motions  
 

the tunes are usually such that only sum resonances with orders higher than 5 
 

can affect the particles (long range behavior) 
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MATCHED BEAM, 3D beam dynamics for different focusing channels 
 

Continuous focusing 
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- For a mismatched beam the phase advances of the envelope oscillations are given by : 
σB

2 =  2 ( σt
2  +  σ0t

2 )     and     σQ
2  =  3 σt

2  +  σ0t
2 

for the “breathing” and “quadrupolar” modes respectively 
 

The resonance conditions : 
i σpx  -  j σpy  =  n σB   or   n σQ 

are fulfilled at the lowest order (j = n = 1) when : 
i σot  -  σt  =  [2 ( σt

2  +  σ0t
2 )]1/2   or   [3 σt

2  +  σ0t
2]1/2 

 
then for : 

 
i  =  η + [2 (η2 + 1)]1/2   or   η + [3 η2 + 1]1/2 

 
then when : 

 
i = 2.1 (Breathing) or 1.8 (Quadrupolar)         for η = 0.5 

 
 

MISMATCHS MUST PLAY AN IMPORTANT ROLE IN COUPLING RESONANCES 
WHEN  η < 0.6 

 
 

Look to resonances of the type   2 σpx  -  σpy  =   σB   or   =   σQ 
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3- Reduced parameters, tune diagram and stability chart 
 

3-1- Beam dynamics with reduced parameters 
2D coupling resonances can be studied using a set of 3 reduced parameters. 

Ingo Hofmann chose :   α   ,   ηx or  ηy   and   εx /εy =  η2 / α       with    η2 = α εx /εy 
Stability charts in diagrams       (1/α , ηy)     or    (α , ηx)       for a fixed value of εx / εy 

 

S0y/S0x=1.8
S0y/S0x=1.7
S0y/S0x=1.6
S0y/S0x=1.5
S0y/S0x=1.4
S0y/S0x=1.3
S0y/S0x=1.2
S0y/S0x=1.1
S0y/S0x=1.0
S0y/S0x=.9
S0y/S0x=.8
S0y/S0x=.7
S0y/S0x=.6
S0y/S0x=.5
S0y/S0x=.4
S0y/S0x=.3
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ηx = σx / σox as a function of  α =  σy / σx for  σoy / σox = 0.3 to 1.8 step 0.1 and for  εy /εx = 2 
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Remark :   2D studies give results close to 3D studies 
 

0
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1

  σx / σy 
ηx as a function of 1/α = σx / σy for εx /εy = 5 and ηy = 0.6 

2D (pink)  -  3D with z = y (dashed red) and 3D with z = x (dashed blue) 
 

2D parameters of interest for the coupling resonance studies 
are weakly dependant of the 3D distribution 

J-M Lagniel, N Pichoff, S Nath, D Uriot,  Equipartition, emittance and halo exchanges,  HALO’03,  May 20-23 2003 17



3-2- Tune diagrams with reduced parameters 
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Tune diagram for    εx /εy = 2    α = σy / σx = 1.05    and    ηy = 0.16 
leading to    ηx = 0.18    σx = 0.18    σox = 1.00    σy = 0.19    σoy = 1.2 
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3-3- Stability charts of the coupling resonances 
(ω = 0) 

 
Trace_Win - CEA Saclay  - DSM/DAPNIA/SEA
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Example of stability chart for the coupling resonances  α = 1/3, 1/2, 1, 2 and 3 

Orange   =   beam core affected by the resonance 
Blue   =   halo affected by the resonance
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4- Study of the coupling resonances  (case of moderate tune depressions) 
 

ηx = 0.6    ηy > 0.5 
 

- Values quite well representative of high-power proton linacs under study 
- Sufficiently above the stochastic threshold to expect a clear identification 

of the coupling resonance effects and of the physics behind emittance transfers 
(avoid a mixture of several different phenomena inherent to large tune depressions) 

 
Example :    Study of the σy / σx = 3 coupling resonance 

 
Working point σx = 0.60, σy = 1.764        α = σy / σx = 2.94 (4th – 8th order coupling resonance) 

ηx = 0.6        ηy from 0.84 to 0.67 
T = a’o2 / b’o2  :  energy ratio ( T =  εx σx / εy σy ) 

 
T     0.5 1.0 2.0 4.0

εx / εy 1.47    2.94 5.88 11.76

η = ao / bo 2.08    2.94 4.16 5.88

ηy 0.84    0.79 0.73 0.67

σoy 2.11    2.23 2.40 2.62
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Tune diagrams 
 

T = 0.5     T = 1.0 
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3D multi-particle simulations    Energy ratio T = 0.5 
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T = 0.5    α = 2.94    εx / εz = 1.47    ηx = 0.60   σox = 1.0   

ηz = 0.822    σz = 1.763    σoz = 2.145   εx = 0.5       εy = 0.34        I = 12.7 mA 
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3D multi-particle simulations    Energy ratio T = 1.0 
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T = 1.0    α = 2.94     εx / εz = 2.94    σoz / σox = 2.30    σox = 1.0  σoz = 2.3 
ηx = 0.60    ηz = 0.77    εx = 0.5       εy = 0.34        I = 11.2 mA 
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3D multi-particle simulations    Energy ratio T = 2.0 
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T = 2.0    α = 2.94     εx / εz = 5.88    σoz / σox = 2.505    σox = 1.0  σoz = 2.505 

ηx = 0.60    ηz = 0.704     εx = 0.5       εy = 0.085        I = 10.17 mA 
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In these conditions of moderate tune depression  (η > 0.5) 
(what do we see when η < 0.5 ???) 

 
3D simulations have always shown that high order coupling resonances : 

 

α =  σy / σx  =  1/3   (8th order) 
α =  σy / σx  =  1/2   (6th order) 
α =  σy / σx  =  2   (6th order) 
α =  σy / σx  =  3   (8th order) 

… 
 

have negligible effects for a large range of energy ratio 
 
 

Coupling effects “visible” only for the 4th order coupling resonance 
 

V 
coefficients 

Excited 
coupling resonances 

α =  σy / σx  

k22 x2 y2 2 σx – 2 σy = 0 α = 1 4th order 
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Study of the     2 σx – 2 σy = 0     4th order coupling resonance 
 

Many 3D PIC simulations (N. Pichoff, D. Uriot) 
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Emittance transfers weakly dependant of the type of density distribution 
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The width of the coupling resonance increases as space charge increases 

(η ↓) 
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On the resonance, the amplitude of the emittance exchange 
is weakly dependant of space charge 
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The length (time) to reach the equilibrium is function of space charge 

 

η 1       0.9 0.8 0.7 0.5 0.2 0.1
1/(1-η) ∞ 10      5.0 3.3 2.0 1.25 1.11

 

~ 7 βtron periods for η = 0.8             ~ 2.5 βtron periods for η = 0.5 
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Particles of the core can be transferred to the halo 
Particle of the halo can be transferred into the core 

Behavior function of the working point and coupling resonance respective positions 
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