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Introduction
Schematic view & its performance specification

402.5 MHz 805 MHz

RFQ DTL CCL SRF, ß=0.61, 0.81MEBT HEBT

To
Ring 

and TargetInjector 2.5 MeV 86.8 MeV 186 MeV 1000 MeV

•Beam power:            1.44MW
•Wfinal: 1 GeV 
•εfoil : ≈ 0.034 π cm-mrad (rms, norm)
•Beam loss: <1 W/m
•Ipeak : 38mA
•Iaverage : 1.55mA
•Length                    : 332m
•Wfinal stability: ± 0.2 MeV
•Wfinal spread: ± 0.85 MeV (rms)
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6 DTL tanks 
FFODDO focusing structure (6βλ)

4 CCL modules
12 segments/module

FODO focusing structure (13βλ)

11 medium beta (β=0.61) cryomodules
3 cavities per cryomodule
5.839m period length 

12 high beta (β=0.81) cryomodules
4 cavities per cryomodule
7.891m period length

Doublet focusing structure
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FE Halo formation and its mitigation

Simulations show a beam loss in the linac

• Multiparticle simulation studies shows a development of a 
substantial halo that leads to beam loss and radio activation of
the SNS linac, especially CCL.

• Beam distribution based on Front End (FE) emittance 
measurements is used.
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Beam loss along the linac

Halo particles are lost primarily on the CCL bore
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Radial beam profile at 171 MeV showing halo extending 
beyond the CCL bore

CCL bore
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Beam based on the FE emittance measurement at LEBT 
exit was used

(Courtesy of J. Staples)

Raw data and derived “measured” beam distribution
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“measured” beam tracked to the RFQ exit is slightly worse 
than water-bag originated beam

•This beam is only slightly worse than one originating from an initial 
water-bag distribution at the RFQ entrance

•The particles that appear to be scattered in the angular dimension 
correspond to low energy particles (~0.1MeV)

x y

x’ y’

at RFQ exit
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Particles at RFQ exit. Particles lost in upstream of MEBT 
are low energy particles (~ 0.1MeV)

Particles lost in
upstream MEBT
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Particles at RFQ exit. Particles lost in the linac (in red) are 
horizontal halo.

Particles lost in linac
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Significant horizontal halo develops at the end of MEBT

x’ y’

x y

At MEBT end
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MEBT and its optics

Beam

DTLRFQ

x

y

z
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Sources of FE halo generation

Region with a large transverse beam eccentricity ~2:1

• MEBT is the largest contributor to FE halo generation 

• Nonlinear space charge force stemming from a large transverse 
beam eccentricity generates halo in MEBT

• As minor contributors, several FE components and physical effects 
may contribute to the generation of beam halo

MEBT optics

~1.6 m

Chopper target

Beam
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Significant fraction of core in x space sees nonlinear space 
charge force, resulting in horizontal halo formation

Beam at the chopper target

potential halo

Space charge force and real space distributions
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MEBT optics are modified for the purpose of comparison

Downstream half is modified

Entire MEBT modified

Chopper target

DTL
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Optics modification alone reduces halo at 171MeV 
significantly

CCL bore

Downstream half
modified

Entire MEBT
modified

Previous MEBT
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Alternative MEBT optics

Previous MEBT optics

Alternative MEBT optics

y phase advance = 90 deg

y phase advance = 63 deg

Upstream half of the MEBT optics is not modified to preserve 
MEBT chopping

Chopper target
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Simple modification of the MEBT optics reduces halo with        
r > 9mm at 171MeV by 87%

CCL bore

Alternative MEBT optics

Previous MEBT optics
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MEBT collimation

MEBT collimator positions

There are only a few available positions for MEBT collimators.
One convenient place is at chopper target (red arrow). 
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Horizontal collimators at the chopper target are 
effective

• Beam distribution at the chopper target (in the middle of MEBT) 
indicates that two horizontal collimators will be very effective in 
removing downstream halo particles.

Halo particles r > 9mm at 171MeV.

Beam distribution at the chopper target
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Schematic view of MEBT collimators at chopper target

• Scrapers mounted on horizontal actuators will not interfere with the 
function of the target.

• It is readily adjustable to accommodate the actual beam conditions, 
which are expected to vary with different operating conditions.

• removes potential halo created in the chopper before it becomes
integrated into the core.
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Beam profile at 171MeV with (red curve) and without MEBT 
collimation (blue curve) at ±8mm. Halo is reduced by 84%

CCL bore

With MEBT collimation

Without MEBT collimation
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Adopted halo mitigation scheme                
Alternative MEBT optics + MEBT collimation

CCL bore

Alternative MEBT + MEBT collimation

reduces beam halo with r > 9mm by 97% at 171MeV
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Anticipated Improvement from FE Halo Mitigation
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DTL collimation studies

For the purpose of studies, we assumed circular apertures placed
only at empty drift tubes, which avoids over-heating of PMQs.

Assumed DTL aperture positions
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Real projections of beam at chopper target and at the first 7 
of proposed DTL apertures

Chopper target Drift tube 1 Drift tube 4 Drift tube 7

Drift tube 10 Drift tube 13 Drift tube 16 Drift tube 19

• Halo particles oscillate through the core with large amplitudes, 
• spending only part of their time on or near the beam perimeter.
• integrated with the core of the beam at a certain positions.

Halo particles with r > 9mm at 171MeV.
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8mm-DTL apertures (scraping 0.22% of beam) are not 
effective

CCL bore
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Energy deposit is not severe to 8mm-DTL apertures

without machine imperfections

With machine imperfections
max and min energy deposit 
out of 100 linacs

Quads:
dx=5mil, dy=5mil, roll=5 mrad
pitch, yaw=10 mrad, ∆K=1.7%
RF:
∆A=0.5%, ∆φ=0.5º



Accelerator Systems Division ORNL30

May 19–23, 2003

6mm-DTL apertures (scraping 1% of beam) reduce halo     
with r > 9 mm at 171MeV by 90%

CCL bore
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Energy deposited to DT’s can be ~ 6 times of design DT 
cooling circuit capacity

Without machine imperfections

With machine imperfections

Energy deposit to DT22 ~ 440W
~ 6 times of design cooling capacity 
of this drift tube
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DTL scrapers may scrape asymmetrically depending on 
imperfections

Proper steering for the DTL apertures is not available:
• The random misalignment of the PMQs steers the beam.
• 1st dipole steerer is at further downstream of proposed aperture 

positions (49th Drift Tube).
• There are no BPMs in DTL tank 1.
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Summary

MEBT collimation is effective:
• Modifying the MEBT optics and introducing adjustable scrapers as

needed is preferred.
• The hybrid solution does not involve any redesign that would impact 

the construction schedule.
• Because the quads and scrapers are all adjustable, this scheme is 

adaptable to any operational scenario.

DTL collimation does not effectively remove halo:
• too small an aperture is required.
• severe thermal loading of the drift tubes.
• lack the flexibility required to accommodate beam matching and 

steering.
• asymmetric scraping, resulting from errors and lack of steering of SNS 

DTL tank 1.
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