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Introduction
Schematic view & its performance specification _ SNS

SPMEMIUH H[lITRDH SULIR[{
L 4

402.5 MHz 805 MHz

< > <« >
E m MEBT [ CCH SRF, 8=0.61, 0.81 )_HEET—>
? ? ? ? ? To

Ring

Injector 2.5 MeV 86.8 MeV 186 MeV 1000 MeV and Target
*Beam power: 1.44MW

“We i 1 GeV

*Eoil - ~ 0.034 n cm-mrad (rms, norm)

*Beam loss: <1 W/m

*lseak : 38mA

*laverage : 1.55mA

*Length : 332m

W, stability: + 0.2 MeV

*W: ., spread: + 0.85 MeV (rms)
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—QANS

6 DTL tanks
FFODDO focusing structure (63A)

4 CCL modules
12 segments/module
FODO focusing structure (1331)

11 medium beta (f=0.61) cryomodules
3 cavities per cryomodule
5.839m period length
12 high beta (=0.81) cryomodules
4 cavities per cryomodule
7.891m period length
Doublet focusing structure

May 19-23, 2003
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FE Halo formation and its mitigation gSNS

SPMEMIUH H[lITRDH SULIRU

Simulations show a beam loss in the linac

« Multiparticle simulation studies shows a development of a
substantial halo that leads to beam loss and radio activation of
the SNS linac, especially CCL.

« Beam distribution based on Front End (FE) emittance
measurements is used.
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Beam loss along the linac
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Halo particles are lost primarily on the CCL bore
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Radial beam profile at 171 MeV showing halo extending

beyond the CCL bore 1 zSNS
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Beam based on the FE emittance measurement at LEBT

exit was used

Input Data

RON SOURCE

Genrays

5000 paricles generated

*, y threshold: 0.0210, 0.0130
#, ¥ fract selected: 0.835, 0.307
®, Y drifts: -16.1, -19.0 mm

Twiss Parameters:

emitt alpha
(mm-mrad,n)

Input Data:
% 0323 -0.718
y 0198 013

Thresholded:
x 0213 -012
y 0158 0.37

Qutput Data:
% 0198 0.32 0.045
y 0148 1.09 0.061

Aper 0.0 mm radius at -3.0 mm

Input Files:
emi7<200.dat
emi7yZ00.dat

Raw data and derived “measured” beam distribution Moy 1523, 2003

Accelerator Systems Division

ORNL



“measured” beam tracked to the RFQ exit is slightly worse

than water-bag originated beam ﬂz SNS
smmlun'ﬁﬁll{?{mum
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at RFQ exit
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*This beam is only slightly worse than one originating from an initial
water-bag distribution at the RFQ entrance

*The particles that appear to be scattered in the angular dimension
correspond to low energy particles (~0.1MeV)

May 19-23, 2003
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Particles at RFQ exit. Particles lost in upstream of MEBT

are low energy particles (~ 0.1MeV)
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Particles at RFQ exit. Particles lost in the linac (in red) are

horizontal halo.
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Significant horizontal halo develops at the end of MEBT SNS
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At MEBT end
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MEBT and its optics
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Sources of FE halo generation Z{SNS

 MEBT is the largest contributor to FE halo generation

* Nonlinear space charge force stemming from a large transverse

beam eccentricity generates halo in MEBT

SPMEMIUH H[lITEDH SOURCE

* As minor contributors, several FE components and physical effects

may contribute to the generation of beam halo

MEBT optics _ Chopper target
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Region with a large transverse beam eccentricity ~2:1
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Significant fraction of core in x space sees nonlinear space

charge force, resulting in horizontal halo formation ”gSNS
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Beam at the chopper target
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Space charge force and real space distributions
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MEBT optics are modified for the purpose of comparison

SP LEA 10 HH[IHR[I'H SOURCE

JEN

Entire MEBT modified
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Optics modification alone reduces halo at 171MeV
significantly

number of particles
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10° |
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At 171MeV

Blue : baseline MEBT
Red :2nd half of MEBT optics modified
Green: all MEBT optics modified

Downstream half
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Alternative MEBT optics
Serstinciiderebeina IR STITTY .

SPALLATION NEUTRON SOURCE

Upstream half of the MEBT optics is not modified to preserve i
MEBT chopping

AP TR T R

y phase advance = 63 deg

Alternative MEBT optics

y phase advance = 90 deg

Previous MEBT optics

May 19-23, 2003
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Simple modification of the MEBT optics reduces halo with

r>9mm at 171MeV by 87% SNS
SPALLATION HllIIEDH SOURCE
beam profile at 17 1MeV without collimation
10° |
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MEBT collimation

There are only a few available positions for MEBT collimators.
One convenient place is at chopper target (red arrow).
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Horizontal collimators at the chopper target are
effective

AN
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Beam distribution at the chopper target (in the middle of MEBT)

indicates that two horizontal collimators will be very effective in
removing downstream halo particles.

Halo particles r > 9mm at 171MeV.
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Beam distribution at the chopper target
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Schematic view of MEBT collimators at chopper target gSNS

chopper
target

» Scrapers mounted on horizontal actuators will not interfere with the
function of the target.

* It is readily adjustable to accommodate the actual beam conditions,
which are expected to vary with different operating conditions.

* removes potential halo created in the chopper before it becomes
integrated into the core.

adjustable
seraper

adjustable
scraper

May 19-23, 2003
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Beam profile at 171MeV with (red curve) and without MEBT

number of particles

10

10°

With MEBTcolﬁ;tion L

collimation (blue curve) at £8mm. Halo is reduced by 84%
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beam profile at 171MeV

Blue: without collimation
Red: with collimation
+/-8mm X collimation at chopper target
L 8mm DTL apertures

Wlthout MEBT collimation
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Adopted halo mitigation scheme
|

Alternative MEBT optics + MEBT collimation : MSNS
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reduces beam halo with r > 9mm by 97% at 171MeV

10° L “'._\ Beam profile at 17 1MeV
_ Blue: baseline MEBT without collimation
Red: alternative MEBT with collimation
. Alternative MEBT + MEBT collimation
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Anticipated Improvement from FE Halo Mitigation :SNS
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DTL collimation studies
bt ertioc b o BRI REIPRTIRETRRTEY |

SPALLATION NEUTRON SOURCE

For the purpose of studies, we assumed circular apertures placed ™
only at empty drift tubes, which avoids over-heating of PMQs.

Tank 1 e
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i 20 1 I 40

Assumed DTL aperture positions
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Real projections of beam at chopper target and at the first 7

of proposed DTL apertures MSNS

Halo particles with r > 9mm at 171 MeV
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» Halo particles oscillate through the core with large amplitudes,
» spending only part of their time on or near the beam perimeter.

* integrated with the core of the beam at a certain positions.
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8mm-DTL apertures (scraping 0.22% of beam) are not
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Energy deposit is not severe to 8mm-DTL apertures

Energy deposit [
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without machine imperfections

With machine imperfections
max and min energy deposit
out of 100 linacs

Quads:

dx=5mil, dy=5mil, roll=5 mrad
pitch, yaw=10 mrad, AK=1.7%
RF:

AA=0.5%, A$p=0.5°
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6mm-DTL apertures (scraping 1

% of beam) reduce halo

ALLATION NEUTRON SOURCE
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Energy deposited to DT’s can be ~ 6 times of design DT
cooling circuit capacity

A

SPALLATION NEUTRON SOURCE
Ty

Without machine imperfections

100

Energy deposit W]

With machine imperfections

Energy deposit to DT22 ~ 440W
~ 6 times of design cooling capacity
of this drift tube

Energydeposit [W]

May 19-23, 2003
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DTL scrapers may scrape asymmetrically depending on

et SIS
0.4 s
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L 4

0.2
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Proper steering for the DTL apertures is not available:

* The random misalignment of the PMQs steers the beam.

 1st dipole steerer is at further downstream of proposed aperture
positions (49t Drift Tube).

* There are no BPMs in DTL tank 1.

May 19-23, 2003
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summay s

SPALLATION NEUTRON SOURCE

W’(/U \

MEBT collimation is effective:

Modifying the MEBT optics and introducing adjustable scrapers as
needed is preferred.

The hybrid solution does not involve any redesign that would impact
the construction schedule.

Because the quads and scrapers are all adjustable, this scheme is
adaptable to any operational scenario.

DTL collimation does not effectively remove halo:

too small an aperture is required.
severe thermal loading of the drift tubes.

lack the flexibility required to accommodate beam matching and
steering.

asymmetric scraping, resulting from errors and lack of steering of SNS
DTL tank 1.

May 19-23, 2003
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