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Benchmarking project — 2D aspects
«3D” see Talk by G. Franchetti et al.

Coherent resonance effects
Code comparison

Long-term effects



Scope

between injection pulses:
~ 10° turns at AQ~0.15

 understand interplay of space charge & | predict blow-up & loss (<1%)
nonlinear resonance + halo formation =

* benchmark simulation by experiment
f

SIS 100/200

Application to:
International Facility for Ions and
Antiprotons at GSI




We proposed experiment to CERN-PS group

to test our theoretical concept presented at 2002 ICFA-beam dynamics workshop

(Fermilab)
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Systematic study of mechanisms

First step: 2D PIC-simulation

Using MICROMAP code & IMPACT

10° & 10° particles on 64x64 grid for ~ 103 turns
Constant focusing and stationary conditions *
Compared with analytical 2D space charge model

* no acceleration, rf bunching, cooling ...



Resonance driving and de-tuning

For zero space charge:
*  maximum rms emittance growth ~23% - no crossing / beam accumulation

«  only weakly dependent on k; and distribution function
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Coherent Effects for KV and WB: 80% peak
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Horizontal phase space
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Gaussian ~ only incoherent response < 4%

1.1 ] self-consistent
1.08 4 Gaussian —— "frozen"
E k3: 1 25 ............. IOSS S.-C.
S 1064 -~ . - loss-frozen
S
o3 .04 3
1.02
1 f‘ — N

L L L L L L L ) L
6.23 6.24 f25 6.26 6.27 628 6.29 6.3
loss Qx
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*  but: would be different if tune crossing through resonance!

* Incoherent (,,frozen*) effects ~ sufficient representation



Strongly suppressed rms growth due to space charge de-tuning
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Significant loss appears for k;=250 (200 A):
two regimes: core growth & loss/halo
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Confirmed by dynamic aperture calculation:
1s found to shrink into beam - eliminating first halo, then core
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Code comparison: with IMPACT 3D/coasting beam
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*  Identical boundaries — Gaussian — k;=250
. 1 M particles in IMPACT vs. 100 K in MICROMAP
1000 turns
Excellent agreement




Longer run from IMPACT /106 particles:
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e  Origin of slowly rising rms emittance not clear

Continuing slight loss

e Resonance diffusion or PIC-noise?



Clarify slow growth: compared with analytical space charge

Gauss’ law on round beam — noise-free
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IMPACT *
* Resonance diffusion could be origin

* No continuing growth in 2D
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