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Section 1. introduction

In 1998, a substantial shorter beam life time was observed as soon as the E-Cooler was
turned on in Celsius and this phenomenon has been called ‘electron heating’. Similar
phenomena have also been observed by other facilities such as NAP-M, Fermi lab,
Indiana, TARN Il and COSY. Although a nonlinear electric field is regarded as an
important reason for the fast beam loss in Celsius due to the fact that the electron beams
has a smaller radius than the ion beam, the coherent ion-electron beam interaction may
also play a role. For RHIC e-cooler, since the electron beam and the ion beam have
essentially the same beam size, the nonlinear electric field effects are greatly reduced and
the coherent ion-electron interaction could be important for the ion beam stability.
V.V.Parkhamchuk and V.B.Reva developed a dipole oscillation model to estimate the
growth rate due to transversal coherent oscillation induced by electron beam 2. It is also
shown that this coherent effect could be amplified in the presence of the ion clouds
ionized from the residue gas®. This model is reviewed and applied to the RHIC electron
cooling parameters. In section 2, the longitudinal two stream coupling is studied and the
instability threshold is shown for the designed RHIC parameters. In section 3, the
transverse two stream coupling equation is solved and the growth rate of the transverse
coherent oscillation is estimated for the magnetized electron cooling scheme. The effects
of the ion clouds in the cooling section have been taken into account and the dependence
of the growth rate on the neutralization factor is derived. The stability analysis of the ion
clouds motion inside the cooling section has also been made in order to estimate the
neutralization ratio. It is shown that, in the presence of a strong longitudinal magnetic
field, the ion clouds may not be removed by simply making a gap due to the Larmor
oscillation resonance. The calculation for non-magnetized electron cooling design is
given in subsection 3.4 and it shows that the designed electron density is three orders of
magnitude smaller than the transverse instability threshold.



Section 2. Longitudinal-Longitudinal Coupling

2.1Langmuir oscillation equations of motion

In the presence of the electron beam, the longitudinal electrostatic oscillations (Langmuir
oscillations) can be excited and amplified from turn to turn, leading to an ion beam
instability. As shown in Fig.1, the electron and ion displacement from their equilibrium
position make the local longitudinal boundaries carry opposite surface charge
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Fig.1.The coherent displacement of all ions/electrons within a local region of the ion beam, Si, makes the
charge density inside the region different from the equilibrium and thus induces local electrostatic field,

which in turn act back on the perturbing particles and make them oscillate around the equilibrium position.

where Z, is the ion charge number. Assuming the volume charge density variation due to

the displacement within the considered region is negligible, the electrostatic field due to
the displacement is

E,(2,8) = —(en,s, (2,) - Zens,(z,0)) 2.1)
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The negative sign comes from the fact that the positive longitudinal displacement of
positive charge particles introduces positive surface charge to the right boundary and thus
creates a negative electrostatic field. The factor of 2 comes from the fact that both
boundaries contribute the same amount of surface charge with opposite sign. The
equations of longitudinal motion for an electron/ion within the considered region are thus,
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Since inside the considered region, the longitudinal position of each particle is the sum of
its equilibrium position and the longitudinal displacement, i.e.

_ -0
Z,.= Zc,i +Se,i
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and since the unperturbed equilibrium position for each particle is independent of time,
the equation of motion for the displacements have been obtained as following,
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2.2 Transfer matrix for Langmuir oscillation in cooling section.

Given the initial condition, the equation (2.4) and (2.5) can be solved and thus the
displacements at the back end of the cooling section can be obtained. Since the electron
beam is much colder than the ion beam and will be renewed for each turn, the initial
condition for the electron beam can be set to

s.(2,0)0=0 (2.6)
d
ase(z,O) =0 (2.7)

where t = 0 corresponds to front end of the cooling section.

Equation (2.1) can be rewritten as,

LAll the numbers are given for the commoving frame densities n, = 7.697 x10"m= and n, =7.117 %10 m™2, which correspond

to RHIC magnetized cooling parameters.



Ez(z,t)=%( 2 s, () —als (2.0) (2.8)

By applying equation (2.4), (2.5) and (2.8), the differential equation for the longitudinal
electric field can be derived as

d 2
d 142
where

@ = |02, + 0% =1.504x10%s™".

Thus the longitudinal electric field due to the displacements of ions and electrons in the
considered region turns out to be

E,(z,t)= EZ (z)cos(wpt + @) (2.10)

—E,(z,t) =-&(E,(z,1)

Att =0, by equating equation (2.8) and (2.10), one gets

08, (2,0) (2.11)
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By equation (2.3) and (2.10), the equation of motion for ion displacement can be
rewritten to

t2 I(z t)_ E ,(2)cos(w,t + @) (2.13)

d

Integrating equation (2.13) over t, the velocity of the particles’ longitudinal shift can be
obtained,

%Si (z,t) = —¢a, sin(w,7)s,(z,0) + [§(cos(a)0r) -1 +1]s‘i (z,0) (2.14)

2
.
Wherefz—';=1.879><10’5, r:ICL"' is the flight time in the commoving frame and
Wy
.1 1S the length of the cooling section. Then we can get the solution of the displacement,

s, by integrating equation (2.14),

s,(z,t) = [£(cos(w,r) —1) +1]s, (2,0) + i[gsin(wor) +(1—-&)w,r)s (2,0) (2.15)
,

0

From equation (2.14) and (2.15), the transfer matrix for the ion displacement due to
coherent Langmuir oscillation in the cooling section is
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Thus for each turn passing through the cooling section, the ions’ local longitudinal
displacements varies as

Si T_ langmuir S-i

2.3 Determinant of the transfer matrix

The determinant of the transfer matrix can be represented in terms of the plasma
frequencies as following,
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where the relation a),fia) = o>’ is used in the derivation. If ‘M
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>1 , the electron
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beam will transfer energy to the ion oscillation and thus increase the local electrostatic
oscillation and cause instability. From equation (2.17), the condition for ‘M >1 can

langmuir

be depicted as follows,

\M

langmuir

1_4“)'94“9' sin? (28 )[a’o ot(® ) 1} (2.18)
w 2

0



20 20

10

~10

~20-29

1.05 2.09 3.14 4.19 5.24
0 X

Fig.2 Plot to show the sign of the ‘M

langmuir

6.28
2n

—1. The red solid curve is for y(x) = xcot(x) and

the blue dot line is for y(x) =1. The plot shows the sign changes at X =7 , i.e. @,7 =27 .

Thus the threshold for the determinant of the transfer matrix to be bigger than 1 is

W,T =271

(2.19)

The RHIC gold beam parameters in the cooling section are shown in Table 1

Enyr Eny 15 7 mm.mrad.
B B, 60 meter

N, (Particles per bunch) 10°

l, (rms Bunch length) 0.37 meter

y (Beam energy) 100

oo, (lonbeam size) 1.2 mm

n, (lon beam density in beam frame)

7.697 x10" meter 3

T (Cooling section flight time in beam frame )

2x107%s

Table.1 RHIC gold ion beam parameters in the cooling section. For simplicity, a round beam
approximation is used in the calculation. The emittance refers to 95% emittance.
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Fig.3 Det(M i ) dependence of the electron beam density

As shown in Fig.3, the longitudinal electrostatic oscillation puts an electron density
limitation, n,,, =3.102x10°m= , which correspond to w,z = 27, for the ion beam to be

stable. For the current electron cooler design, the electron beam has the parameters
shown in Table 2,

Q. (Electron charge per bunch) 20nC
N, (Electron number per bunch) 1.25x10"
o, (Electron rms beam size) 1.225x10°m

Table.2 Electron beam parameters for the current electron cooler design.
Thus, the density limitation corresponds to a bunch length limitation of the electron beam,

l, > N 4 947x107m

- 2
”O-e ne,th7

There are other limitations on the electron beam bunch length set by the requirement of
optimizing the cooling force. For example if the electron bunch is shorter than 18 cm,
Debye screening starts to reduce the cooling force. Since the electron beam bunch length
is already 2 cm at the exit of the gun and stretchers have been designed to stretch the
beam for higher cooling rate, this coherent longitudinal instability does not affect the
current RHIC magnetized electron cooler design.




2.4 Eigenvalues of the transfer matrix

AIthough‘M <1 is necessary condition for the ion beam to be stable, it may not be

sufficient. In order to make the oscillation stable, any linear combination of the velocity
and displacement of the local electrostatic oscillation has to be bounded. In other words,
the eigenvalues of the transfer matrix has to be smaller or equal to 1 as well. The two
eigenvalues of the transfer matrix (2.16) can be calculated from the following equations,

A, =1+ &(cos(wyr) —1) £ 4/Esin(w, )@, (& 1) - Esin(w,7)] (2.20)

For RHIC parameters, as we have seen above, & <<1 and equation (2.20) can be
rewritten to

A, —1=[-Ewyrsin(w,r) +O(&) (2.21)

langmuir

Therefore, the condition for |1, =1/ <1 is sin(a,r)>0 or
W, T < (2.22)

which correspond to the following electron beam bunch length

l, = i\'— = 4.589x107?m
ﬂ-ae ne,thy

Outside the cooling section, the ion beam Plasma oscillation will be described by the
following equation,
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Fig.4 Plots of the eigenvalues and the determinant of the transfer matrix. The x axis is the electron density
in units of M2 The red solid curve is -1 and the blue dot curve is ‘Mlangmuir‘_las already shown in the

Fig.3. The maximal value of W—lis around 0.01, which is much larger than the maximum of M , and

langmuir

the threshold happens at oz = 7, I.6. n, = 7.75x10%.

The corresponding transfer matrix is

sin(w,.t
Cos(a)pirrest) ( . rest)

M rest a)pi (224)
- a)pi Sin(a)pirrest) Cos(a)pirrest)

where

Tpos = Cone ~lwa _ 1 259107 (2.25)

v

is the flight time outside the electron cooling section and C,,,. =3833.845m is the

circumference of RHIC. Thus the one turn transfer matrix for the longitudinal plasma
oscillation is

M, =M M (2.26)

ring = Langmuir rest

As shown in Fig.4.1, including the rest of the ring does not affect the determinant of the
one turn transfer matrix but the maximal eigenvalue does change. As a result, the
eigenvalue and the determinant set the same limitation to the electron beam density,
which for the current magnetized electron cooler design is

N

l,>——=—=1.147x10"m
o Ne 0¥

The synchrotron tune of RHIC is 3.7x10™* which is 5 times faster than the maximal

growth rate, 6.6x107°per turn. So the oscillation could be distorted by the synchrotron
motion before it is actually built up.
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Section 3. Transverse-Transverse Coupling

3.1 Transversal coupling for nonmagnetized cooling

When the beam enters the cooling section and merges with the cooling electron beam, a
misalignment perturbation of the two beams can cause their centroids to perform
transversal oscillation as shown in Fig.5. In order to obtain the equation of motion for the
beam centroids, let’s consider the electrostatic field within the beams in the commoving
frame. As mentioned in section 2, in commoving frame, the beams have the geometry as
following,

l.'=1,7 =0.18x100 = 18meter >> o, = 0.002meter (3.1)
l.'= 1Ly =0.3x100 = 30meter >> o, = 0.0014meter (3.2)

As shown in Fig.5 (b), the coordinates relations among the beam centroids frame and the
commoving frame is
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Fig.5 Illustration of Transversal Coupling in the cooling section. (a) The red dash curve represents for the ion beam and
the blue dash-dot curve represents for the electron beam. The two circles represent the cross-section of the two beam
and the solid spots are their centroids. (b) The cross sections of the beams shows the coordinates relations , where

similar with (a), the solid spots are the beam centroids and ﬁe, F§i are their coordinates.

R, = j r,f.(x,y,z,t)dxdy (integrate over electron beam cross section) (3.4)

R = Iﬁ f.(X,y,z,t)dxdy (integrate over ion beam cross section) (3.5)

Equation (3.1) and (3.2) show that infinite long beam approximation could be used to
calculate the transverse electric field. If the oscillation amplitude is smaller than the beam
size, the electric field within the overlapping part of the two beams is

£ (Ft)=—SNle , Zi€NT, (3.6)
. 2
& 2¢,

Thus in the rest frame, for an ion/electron sitting in position r and in time t, the
transversal electrostatic force it sees is



e’nr,'  Z.e’nr’'

Ee(r )= (for an electron in (F,t)) @3.7)
2¢e, 2¢,
2 2.2, =
Ifli(r’t):_zie Nefe Zient (foranionin (F,t)) (3.8)
2¢, 25,
And its equation of motion is
2
s o -k (T, - R) (for an electron in (F.,t)) (3.9)
2
Fﬁ ——@2([-R)+ T (foranionin (F,t)) (3.10)

Assuming the beam distribution function changes slowly with time and by integrating
equation (3.9) and (3.10) over the cross section according to the beam distribution, the
centroids’ equations of motion can be obtained as following,

2

m—zﬁe(z,t)m;ﬁe(z,t)=a)§i§i(z,t) (3.11)

2

PF“ei(z,t)+a)i§fei(z,t)=a)i§F§e(z,t) (3.12)

The transversal commoving frame plasma frequencies, o ;, @, »,,, ®,; are defined as .

2
P (3.12.3)
2m, &,
2

2
wop = | LS (3.12.4)
2M; &,
2
o, = |ZiNeE (3.12.5)
2M,¢&,
2
o, = |2 _3108x10%s (3.12.6)
2m, &,

Comparing with equation (2.4) and (2.5), the only difference is the coefficients of the
second terms at the left hand side both for ion and electron beam. So the steps for solving

(3.11) and (3.12) are similar with what has been done in section 2.2. By setting the initial
condition,

R.(2,0) =%F§e(z,0) =0

one gets



—22 R.(z,t) = —w’| R, (z,0)cos(w,t) e R (z,O)sin(a)Ot)} (3.17)
dt @,

where @, is now defined as

0, = Ol + (3.17.1)

Integrating equation (3.17) from the front side of the cooling section t =0, one obtains

%ﬁi (2,1) = =&, sin(ayt) R, (2,0) + [L+ E(cos(myt) —1)]I3i (2,0 (3.18)
R (z,7) =L+ &(cos(w,r) —1) R, (2,0) + i[a)or(l— &)+ &sin(w,7) R (2,0) (3.19)
@,

0

where & is now defined as

2
[

g=" (3.20)

@y

Thus the transfer matrix of two stream dipole type transversal interaction for the ion
beam centroid is

[ e(eost@yr) -1 +1 L [esin(@yr) + 1 Ewyr]
,

transverse

M (3.22)

0
—&w, sin(w,7) &(cos(w,7)-1)+1
which has exactly the same form of the transfer matrix due to the longitudinal Langmuir

oscillation as shown in equation (2.16) except that the & and o, are defined differently

from section 2.2. Thus for each turn passing through the cooling section, the transversal
centroid motion is effected by the electron beam according to the following expression,

. = transverse > '
R ). R/,

The calculation of |M

transverse

| is the same as in equation (2.17) and (2.18)

|M transverse 4 2

0

2 2
-1-= 40,0 sinz(“’gf)[“’of cot(“’zof) —1} (3.24)

As shown in Fig.6%, since the oscillation frequency for the transverse oscillation , @®,, 1S5

orders smaller than the longitudinal Langmuir oscillation, the instability threshold is 5
orders larger than what the longitudinal oscillation has and thus is not likely to be a real

L All the Figures in this subsection are given for the commoving frame densities p —53x10?m= andp_-3.3x10"m - The more
realistic calculation for non-magnetized electron cooling design with wiggler field will be given in subsetion 3.4.



limitation for the electron cooler design. The eigenvalues of M, . 1S @lSO the same as
(2.20) with different definitions of & and @, .

A, =1+ &(cos(wyr) —1) £ 4/Esin(w, )@, (& 1) — Esin(w,7)] (3.25)

Comparing with the longitudinal oscillation, the instability threshold of the electron beam
density is pretty much the same for the eigenvalue restriction and the determinant
restriction as shown in Fig.7. To implement M, ... INtO the ring, one need to do the
Lorentz transformation at the entrance and inverse Lorentz transformation at the end of
the cooling section since M, .. IS derived in the commoving frame. Furthermore, to

avoid double counting the phase advance inside the cooling section, one may add
negative drift matrix to compensate. As a result, the transfer matrix in lab frame is given

by
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Fig. 6 The dependence of |M . 1—1 on the electron density N, shows a instability threshold 5 orders

larger than the longitudinal Langmuir oscillation.
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As shown in Fig.8, the threshold of the instability decreases about one order of magnitude
after including the cooling section into the ring.
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3.2 Transversal Coupling in the presence of a solenoid

For magnetized cooling, a solenoid with strong longitudinal magnetic field has to be
included in the cooling section. For RHIC electron cooler, one option is to include a 30
meter long B, =5T solenoid to enhance the cooling force. The Larmor frequencies in the

beam commoving frame for the ions and electrons are

Transverse dipole oscillation in the cooling section with longitudinal magnetic field. The small blue circle crossed by
the magnetic field line represents the electron Larmor oscillation orbit and the bigger circle going through it with an
arrow represents the drift motion orbit.

:%B” ~8.79x10Ms™ (3.26)

e

ce

_ % _1.93x10%s" (3.27)

ci



Consequently, only the electrons are completely magnetized as the flight time is10~°s
The equation of motion for each ion or electron is similar to (3.9) or (3.10) with an
additional term coming from the magnetic force, i.e.

2

ot =00 -R) -0l (L - R) - 0 (T x9) (3.28)
2

T =—0l(T -R)+ 0l (F —R)+ 0, (ST %9 3.29)

where Sis the unit vector along the longitudinal direction. Integrating (3.28) and (3.29)
over the electron and ion beam transverse distribution respectively, one gets

dTiﬁe + iR, + 0, (SR, <9 = ofR (3.30)
—R +w’R - a)ce( R x8) = w’R, (3.31)
Define,

Z, =X, +iY, (3.38)
Z =X, +1Y, (3.39)

where X and Y are the transversal components of R.
Thus equation (3.30) and (3.31) can be rewritten as

iz_e+ IAZ, =iIAZ, (3.50)
dt
d? d
—Zi+oiZ +iwg—Z, =w’Z, (3.52)
dt Ldt
where
2
A=—1=757x10°s™ (3.51)
w

ce

— 1 Tce
Z. T [zt

Equation (3.50) and (3.52) describe the coupling of the ion beam centroid with the
guiding center of the electron beam centroid. Taking the trial solutions as the following
Z,(t)=ae™ (3.53)
Z,(t)y=ae'™ (3.54)

and inserting them into (3.50) and (3.52) respectively, one gets

(~iw+iA)a, —iAa, =0 (3.55)



(— o + o’ + a)cia))ai ~wla, =0 (3.56)

Thus the eigenfrequencies are'

., = [a) +A) (w0 +A) +4(a)é—Aa)ci)} (3.57.1)

@, =0 (3.57.3)

Thus, the solution of (3.50) and (3.52) should be the linear combination of three modes
with the eigenfrequencies o, , @, and , respectively, i.e.

3

Z,(t) =) a,e " (3.61)
a=1

_ 3 _
Z(t)=) a,e" (3.62)

a=1
From equation (3.56), one gets

2
a,, = (1—60—‘; a)c'—?‘ljaia =T, a, (3.63)
a)ie a)ie
where
2
T, :{1—a’—g+ “’d‘;’aj (3.64)
a)ie a)ie

By using equation (3.63), equation (3.62) can rewritten as
Z.(t) = ZT a e (3.65)

a“la

Taking the derivative of (3.61) with respect to t, one gets
3 .
L2,0)=3 (o, )a,e (3.66)
a=1

When t =0, equation (3.61), (3.65) and (3.66) can be used to determine the coefficient
a,, and the solution for equation (3.50) and (3.52) can be obtained as,

Z(t) Z,(0)

Z,(t) |=M| Z,(0) (3.71)
Z,(t) Z,00

where

1
For B, =5T, n, =7.697x10"m™® andn_ =7.117 x10*m™, w, =1.946x10°s" & =-1.169x10°s™
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e—i{z)lt e—ia)zt 1 1 l l
M=|-ioe™ —iwe™™ 0|-io, —iw, 0 (3.72)

Te'™  Te™ 1 T, T, 1
Equation (3.57.3) has been taken into account to get a simpler form of M in (3.72).

Setting the initial condition of the electron to be Z_e(O) =0, the solution for the ion beam
centroid can be expressed as a 2 x 2 transfer matrix, i.e.

[Z.‘ (t)] =M (Z (0)j (3.74)

Z(t) Z,(0)

where

M o= (mll mlzJ (3.75)
le m22

The matrix elements of M, are listed in Appendix2, Equation (3.75) can be rewritten
into a 4 x 4 matrix form in Frenet-Serret coordinate system as,

X (t) X(0)

X't .| X0 (3.90)
Yi) | Y(0)

Yi'(t) Y;'(0)
where

An A12V// - Bn - BlZV//
-B
h Azz 2 - Bzz

T, = 7 Vi (3.91)
0 B, B, A AV

B, An

2B v

v, 22 v, Ao,

The matrix elements A ;and B, ;are listed in the Appendix 2. In order to obtain the one

turn betatron oscillation transfer matrix, consider the ion beam transverse motion starting
from the front end of the solenoid. As the beam going through the front end, it is affected
by the fringe field and the effects can be represented by the transfer matrix?

1 . - .
For B, =5T y=100/n, = 7.697 x10"m= » n_= 7.117 x10%m-2and 60 meter long cooling section, the transfer matrix 1., can
be calculated as shown below,

1 0.585 —6.376x10° 0.115
| -1618x10° 0926 -3.172x107* 0.377
“ | 6.376x10° —0.115 1 0.585

3.172x10* -0.377 -1.618x10° 0.926

2 Reader should not confused the charge number Zi in the following expression with the complex coordinates defined in (3.39)



1 0 0 0
0 iZ,eB,
E.= 2Mi7)‘///
¢ 0 0 1 0
_ iZ;eB, 0 0 1
2ZM;V,,

Then the beam need to be transferred into commoving frame since T, is derived in the
commoving frame. The Lorenz transfer matrix for the transverse plane is given by

1 000

0y 00
Llorentz:
0 010

000 y

Inside the solenoid, the ion beam sees the electron beams and the longitudinal magnetic
field, whose effects to the ion beam centroid have been described by the transfer matrix

T, defined in (3.91). At the end of the solenoid, the beam has to be transformed back to

the lab frame since the edge field effects and the Twiss matrix are all given in the lab
frame. As the ion beam getting out the solenoid, it sees the fringe field again but in the

opposite direction, whose effects is described by Ec’l. Since the drift effects inside the

solenoid has been considered in T, already, the Twiss matrix should not include it again.

However, when the beam optics code calculates the betatron tune of the accelerator with
a cooling section, it automatically takes the cooling section drift into account and thus it
IS necessary to exclude the cooling section drift from the Twiss matrix. This exclusion
can be done by inserting the drift transfer matrix for negative half solenoid length

1 -L 0 o
2
L (_sz 0 1 0 0
drift 2 L
0 0 1 ——
2
0 0 0 1

on both sides of the Twiss matrix and thus keeping the symmetry of the accelerator. L is
the length of the solenoid and for RHIC electron cooler,

L = 60meter

The Twiss matrix for the whole ring without considering the electron-ion beam coupling
IS given by



cos(2zv,) B, sin(2zv,) 0 0
_sin(@zvy) cos(2zv,) 0 0
Rruiss = 0 0 cos(2zv,) B, sin(2zv,)
sin(2zv,)
0 0 —————— cos(2zv,)

y

where v,, v are the betatron tune including the cooling section drift and j,, 5, are the

horizontal and vertical betatron functions at the back end of the cooling section. Thus, the
one turn betatron oscillation transfer matrix is given by

Tring = Lrirt Rrwiss Larin Ec B Ll_olrentzTclooI Liorentz Ec (3.92)
For RHIC,
v, =28.19
v, =29.18 (3.93)

B, = B, = 60meter

The determinant of T, for the current RHIC parameters is calculated to be *
T

~1=7.02x10"° (3.95)

ring
And the eigenvalues of T, are

0.191+0.982i
0.191-0.982i

= _ (3.96)
0.551+0.834i
0.551—0.834i

The amplitudes of the eigenvalues is always slightly different from one and for (3.96),
they are
-5.106x10°®
~5.106x107°
A|-1=4/Re(1)* +Im(1)* -1= 3.97
A JRe() @) 5.457x107° (3.9

5.457x107®

For B, =5T, y =100.n, =7.697 x10""'m® » n, = 7.117 x10**m-*and 60 meter long solenoid, the transfer matrix T

ring can be
calculated as shown below,

0.789 67.748 0.155 13.271
~1544x107  -0105 -3.024x107 —2.052x107

e Tl 0164 ~12.925 0.836 65.981
2.951x10°  7.24x107° -1.506x107? -3.696x1072



The maximum eigenvalue amplitude is very close to the approximate analytical formula
given by V.Parkhomchuk for short interaction time,

2 2
AA,, = \/1%& -1=5476x10"® (3.98)
1

where Ais given in (3.51) and 7 = 1 is the flight time in commoving frame. As shown
7

in Fig.9 and Fig 10, for the considered ion beam and lattice parameters, the determinant
of the transfer matrix and the maximum eigenvalue amplitude are always bigger than 1,
which can cause the betatron oscillation amplitude increase from turn to turn. For the
current parameters, the growth rate is

()
T (3.99)

rev

=4.3x1073%s!

=

where T, is the revolution frequency and C, . =3833.845meter is the circumstance of
RHIC. The growth time is thus

tie = % = 233second (3.100)

5 -4 Instability Growth Rate From Eigenvalue
4.741x10" °1-10 T T T T

Eigenvalue-1

7.671x10" 0,

L1070 ! ! ! 1
110  1.10*® 1.10Y" 1.0 1.10®  1.10%

10%° Ne 10%°

Electron Density In Lab Frame(m”-3)

Fig.9 The dependence of the eigenvalue amplitude on the electron density. The x axis is the electron density in
commoving frame, and the units is meter > the y axis is the maximum value of ‘,1‘ —1 as defined in equation (3.97)



Instability Growth rate From Determinant

_ -5
8.977x10° %110 T T T T
110 ° .
110 ' -
2 (ne)
< AdetMring( n —
e “110°8 _
j5)
D [ ]
110 ° —
1.10 © .
9.861x10 1,
1 ! ! ! |

1-10%° 1-10'° 110" 1108 1-10%° 1-10%°

10 Ne 10%°
Electron Density In Lab Frame(m”-3)
Fig.10 The dependence of the determinant on the electron density. The x axis is the electron density in commoving
frame, and the units is meter . The y axis is ‘ng‘_l as defined in equation (3.95).

Many facilities such as NAP-M, Fermi lab, Indiana, TARN Il and COSY has observed
the transverse coherent instability induced by the electron-ion coherent interaction and
different methods have been applied against it. For the dipole instabilities, a feed back
system is efficient to damp the transverse oscillation amplitude. In the Fermi lab recycler,
the instabilities stops after the machine have been decoupled for horizontal and vertical
motions within the cooling section. For RHIC electron cooler, since there is no solenoid
in the cooling section, this instability will not take place (Ref. Section 3.4).

Section 3.3 lon clouds effects for the transverse coherent
instability within a solenoid

If the negative charge from the electron beam is bigger than the positive charge from the
circulating ion beam?, the ions produced from the residue gas can accumulate inside the
cooling section unless the incoming beams make their motion unstable. Driven by the
electron and ion beams, the accumulating ion clouds could oscillate and act back to the
circulating beams. In section 3.3.1, the ion clouds motion inside a solenoid has been

! For magnetized electron cooling scheme, the electron charge per bunch is 20nC, which is indeed bigger than the gold ion beam
charge, 13nC. However, for the non-magnetized electron cooling scheme, the electron charge per bunch is 5 nC and the ion clouds
can’t accumulate within the cooling section.



studied and stability condition has been shown for varies magnetic field strength. In
section 3.3.2, the effects of ion clouds to the transverse coherent oscillation have been
analyzed.

3.3.1lon clouds motion in the cooling section

Fig.11 lllustration of the ion clouds inside the solenoid. The red ‘+’ represents the ion cloud and the filled
gray region marked ‘1’ represents the incoming commoving electron and ion bunches and blank region ‘2’
represents the space between two successive bunches.

For the first order approximation, assume the displacement of the beam centroid is small
compared with the beam size and can be ignored for the moment. For simplicity, we also
assume the electron bunch has the same bunch length with the ion bunch (This
assumption will not make the result different from the real case since the ion motion will
only depend on the total electron charge per bunch). The equation of motion for a single
accumulated ion in region 1 (where the beams are present) is

2
FZCI + ia)ccl %ch + (a)czle - a’;i)zcl =0 (3101)

where z,, describes single accumulated ion transverse position and defined as
Zy =Xy +1Yy (3.102)

Equation (3.101) is writing in the lab frame since the ion clouds longitudinal motion is
slow. The Larmor frequency and the plasma frequencies are defined as’

o =290 4 8951005 (3.103)

cl

clnee2 8o-1
W, = |29 =2.4x10%s (3.104)
cle 26‘ m
0" el
2
o, = A% 1 91,10° (3.105)
cli 26‘ m
0" el

L Al the numbers given in this section are for B,=5T.n,= 6.63x10%m™2, n = 5.30x10%m™2 and for hydrogen ion, i.e.

Z,=1my=m, (proton mass).




Setting the trial solution of (3.101) to be

zy(t) = a-cleiiwt (3.106)
and Inserting (3.106) into (3.101), one get,
a) a)ccla) ( cle Cll) O (3107)

Thus, the eigenfrequencies are

1.01x10°%s™t
= o = ol + a0kl - 3.108
! 4@~ 05) { 5.33x10%s! ( )

There are two modes for the accumulated ion oscillation with frequency
@, and w, respectively. So, (3.106) should be rewritten as the superposition of these two
modes.

2 .
zy(t) =Y a, "™ (3.109)
a=1
Set the initial condition at t =0 to be
z, =24(0) (3.110)
24 =14(0) (3.111)
From equation (3.109)-(3.111), one gets
Z,(t z,(0
(_C'( )j =M f( ‘C'( )j (3.116)
A0 24(0)
where M IS the transfer matrix for the effects of the beams acting on the accumulating

ion clouds and is defined as

1 a)le—i{uzt -, e—i{ult _ i(e_iw2t _ e—ia)lt)
M focus : —iopt Ia)lt —iayt —iw,t (3117)
o, -, —iow,(e ) we " —we

In region 2 ( the space between two successive bunches), ignoring self field interaction,
the accumulated ions only see the longitudinal magnetic field and thus their equation of
motion is

2

prel Zy oy — dt =0 (3.118)
Integrating equation (3.118), one gets
Eall ey, | 2,0+ 2,0 3.119)

ccl

and



2,(t) =i 2@ gt 240, (g (3.120)

ccl a)ccl

Taking the derivative of equation (3.120) with respect to t, the velocity of the
accumulated ion is

24(t) = 24 (0)e =" (3.121)

From (3.120) and (3.121), the motion of the accumulated ion can be written into the
following matrix form,

[Z.CI (t)j =M Larmor[z.CI (0)] (3122)
Z, (t) Zy (0)

where M,,.... IS the transfer matrix for the Larmor oscillation when the accumulated ion
sitting between two bunches and defined as

1 I e’iwcclt _1
M Larmor — (O (3123)
0 e_i(‘)cclt

From equation (3.116) and (3.122), the transfer matrix for one whole bunch period ( the
time interval for two successive bunches passing by) is

M fl— M focus (tl) M Larmor (tz)
_ (mll mlzj (3.124)

m21 m22

where t and t, are the bunch length and the spacing between bunches respectively. The
elements of M, are defined in Appendix 2. The determinant of the transfer matrix is

‘M ﬂ‘ — e—i((01t1+a)2t1+a)cc|tz) (3126)
Matrix M, can be rewrite into a complex form,
M, =A+IB (3.127)

The matrix elements of A, B are given in Appendix 2. Similar with what we did in
(3.83)-(3.86), the 4x4 transfer matrix for the horizontal and vertical motion of the
accumulated ions can be written as

Xcl (t) An AiZ - Bll - BlZ Xc| (0) Xcl (0)
Xcl (t) _ Az1 A22 - le - Bzz Xc| (0) =T, Xcl (0) (3.131)
Ycl (t) Bll BlZ Au A12 Ycl (0) Ycl (0)

Y.CI (t) BZl BZZ A21 AZZ Y‘CI (0) Y.CI (0)



Setting the initial condition for the ion cloud to be (1,0,0,0) and multiplying it by T, for

20 meters bunch spacing, 0.3 meters bunch length with parameter given below (3.105),
the orbit of the accumulated ion can be obtained as what shown in Fig.11.1. As shown in
Fig.11.1 the ion cloud motion is composed of two parts, the Larmor oscillation and the
drift of the Larmor circle. In order to obtain the drift frequency, consider equation (3.101).
It has the same form as (3.40) with zero Z, to the RHS. Following the procedures from

(3.42) to (3.48), the equation of motion for the Larmor circle guiding center can be
derived as

iz_d I( cle CI|) 0 (31311)
dt @

ccl

where z_cldescribes the guiding center and is defined as

Z, = [z, (1) 3.131.2

cl_ﬂjo o (D)dt (3.131.2)

where T, _ 2 is the Larmor period. The solution of (3.131.1) for each bunch period
Wpel

t +t,is

- s i((uﬁe—(uéi)tl

z4(t) =24(0)e (3.131.4)

where

(=22 21095, (3.131.5)

From (3.103)-(3.105), one gets

2 _ 2
Oy = 2L 44110757 (3.131.6)
2%

The guiding center drift phase advance for each bunch period t, +t, is
AW g = Ogiet; = 0.044 rad (3.131.7)

For one period of guiding center drift oscillation, the number of bunches needed to pass
by the ion cloud is
2r

AY giin

N =

~142 (3.131.8)

This result is consistent with the turn by turn data plotting shown in Fig.11.1. Since the
drift motion only happens when the bunches passing by the cloud (t,out of one bunch

period t, +t,), the average angular drift frequency will be given by the inverse of the
time needed for one drift oscillation multiplied by 27, i.e.



27

Q. =——" —65x10°s" 3.131.9
drift N(tl +t2) ( )

where

t+t, =6.77 x1078s (3.131.10)

The stability condition for ion clouds motion is that the maximal amplitude of the
eigenvalues of T, must be equal or smaller than 1, i.e.

] = A RE(m)? + 1M ) (3.132)

Here we calculate the eigenvalues numerically and the results has been plotted in Fig.12
and Fig.13. As shown in Fig.12, for a zero magnetic field, a gap of 180 ns is enough to
clear the ion clouds out of the cooling section. However, as the magnetic field increases,
the stable region increases as well and when the magnetic field is around a few Tesla, it is
not likely that the ion clouds can be cleared out by simply making a gap for the
circulating beams. One more efficient way could be adjusting the strength of the
magnetic field to the unstable region as shown in Fig. 13. For instance, when there is no
magnetic field, bunch spacing of 20 meters will make the ion accumulate inside the
cooling section but if a longitudinal magnetic field of 0.79-0.98 is applied, the ion clouds
can be cleared out by the first resonance shown in Fig.13. It is also clear from Fig.13, a
bunch spacing of 60 meters can not clear out the ion clouds if the magnetic field sitting at
any region where the maximal amplitude of the eigenvalues is one. Although the
electrostatic force coming from the ion clouds itself has been ignored in the above
discussion, it can be included into the equation of motion (3.101) and (3.118) easily as
shown in the following,

d? . d )
F Zy t1ay a Zy— a)pcl Z, = 0 (3134)
1000052, 15 T T T

—05

-1

o~ 10026111 5 1 1 1
~o 50 100 150 200

0, i 200

Fig.11.1 The orbit of the accumulated ion in the cooling section. The x axis shows the number of bunches passing by
and the y axis shows the transverse position of the ion. The red solid curve is for the horizontal position and the blue
dot curve is for the vertical position.
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Fig. 12 The dependence of the maximal amplitude of the eigenvalues on the bunch spacing. The x axis is the spacing
between two successive bunches in unit of seconds and the y axis is the amplitude of the maximal eigenvalue. Four
curve are plotted for magnetic field equal to 0, 0.1,1 and 5 Tesla. The interval between two successive resonances is
approximately equal to the Lamoure frequency of the ion clouds.The bunch length is taken as 0.3 meters.

2
W Z,+ ia)ccl %ch + (a)czle - a)czli - a)pz)cl)zcl =0 (3133)

where

2 2
Dpo = 1/—ZC' la® (3.135)
2cc"Omcl

The ion cloud density is usually expressed into the neutralization factor 7 defined as the
following,.

Na (3.136)

So equation (3.135) can be rewritten as

2 2
) — nzclnee — 772

3.137
pcl 250mc| ( )

a,

cl *cle

The procedures to solve equation (3.133) and (3.134) are the same as what has been done
for equation (3.101) and the transfer matrix for them are:

a). For region 1, i.e. (3.133), the transfer matrix has the same form as (3.117) except the
eigenfrenquecies includes the ion clouds term now

—i t —iw¢ 1t - —lwg ,t —iw¢ 1t
1 C() e"”f‘“—a)e (L —ij(e'rd gt
| % 2 (e ) (3.138)
—lo; 1ty e—la)fyzt1

M focus (tl) = . —imyt —log
W=~ 0, —loyo, (e —-e ") we -,
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Fig.13 The dependence of the maximal amplitude of the eigenvalues on the field strength of the solenoid. The x axis is
the longitudinal magnetic field of the solenoid in unit of Tesla and the y axis is the maximal amplitude of the

eigenvalues. The red solid curve is for the bunch spacing equal to 60 meters (200 ns) and the blue dash curve is for the
bunch spacing to be 20 meters (67 ns). The bunch length is taken as 0.3 meters.

1 2 2 2 2
a)fl,z = E WD * \/wccl + 4(a)cle — Wy — a)clcl)

(3.139)

b). For region 2, i.e. (3.134), the transfer matrix also has the similar form as (3.117)
instead of (3.123) but with a different eigenfrequencies.

i@ ot i@ ot s oot it

1 W, 8" —aw, 27 —i(e" M —e7 )

M defocus — . —iwy ot —imy ot —iwg t “ig ot (3140)
Oy, — Oy, |~y ,0,,(677" —e ) w6 T —we

where

1 2 2
a)dl,z = E D x ey — 4'a)clcl

(3.141)
Thus the transfer matrix for one bunch period is
M fd = M focusM defocus
The 4 x 4 transfer matrix can be obtained again as
Re(M —Im(M
T, = M) (M) (3.142)
Im(M) Re(My)

By plotting the maximal eigenvalue amplitude of the transfer matrix T,, as the function
of the neutralization factorz, a limit for the ion accumulation can be given for a stable



ion motion. Above the limit, the defocusing effects from the ion cloud itself will stop
further ion accumulation. As shown in Fig. 14, the limit is around 7 =0.0074 for

B, =2T and 1 =0.0011for B, =5T .

Section 3.3.2 Transverse coherent instability in the presence of the ion
cloud

Rel

Fig.15 Illustration of the cooling section commoving beams and the ion cloud. The blue dash curve represents the
electron beams, the red solid curve represents circulating ion beam and the green dot-dash curve represents the
accumulated ion cloud from the residue gas ionization. The solid spots represents their centroids respectively according
to the colors and the solid ellipses represent their cross section.

In section 3.2, the coherent two stream instability has been studied and a growth rate of

2.8x107" per turn has been calculated due to the dipole mode centroid oscillation. One
may ask what will happen to the two stream interaction in the cooling section if the ion
cloud from the ionization of the residue gas is not completely cleared out. In this section,
the effects of the ion cloud to the electron-ion beam long range transverse interaction
will be studied.

B=0T ‘
B=5T ‘

Be2T i
|
|
|

08

110 ? 110 001 0.1
107 n 10
Fig. 14, The dependence of the maximal amplitude of the eigenvalues on the neutralization factor 77 for varies

magnetic field. The x axis is the neutralization factor and the y axis is the maximal amplitude of the transfer matrix
eigenvalus. The matrix is calculated from (3.143) with bunch | ength 0.3 meter and bunch spacing 20 meters (67ns).



Comparing with the situation for section 3.2, one more term due to the ion cloud has to
be added into equation (3.28) and (3.29). Thus the equations of motion for a single
circulating ion or a single electron in the lab frame are

2
dt?

2

=0 (1~ R) =02 (,~R) -0 (T <9) -0, (7 -R,) (3.143)
O e w2 -R)+ o (7 ﬁi)m'ci(%ﬁxé)m'm.(ﬁ—ﬁc.) (3.144)

de?

where the subscribe ‘cl’ stands for ‘cloud’. For consistence with the previous chapter, we
are going to use primed variables such as t', @' for the quantities in lab frame and the non-

primed variables such as t, for the quantities in the beam frame. The equation of

motion for a trapped ion is

d? _ — 2 . = .o, d o . d .
Frcl = cle( Re)+a)pcl (rcl _Rcl)+a)ccl (Ercl XS)+COC|I( R) '— dt’ l

(3.145)

where T"" can appear, for example, because of non-linearity of "external™ electrical fields
created by electrons and other kinds of ions. It can be considered as free parameter.

Typically damping time is about 10-20 periods of the ion coherent perpendicular
oscillations. Equation (3.143)-(3.145) are written in the lab frame and the plasma
frequencies are defined as the following, (All the numbers here and later in this section

are given for the lab frame densities n,=5.3x10"m™ , n',=3.3x10"'m™ and the
hydrogen ion cloud, i.e. Z, =1and m, =m, )

1 A2 241 A2
o= |-t —2295x10"s oy = [ EE 1 21x10%s
2m, e,y 2M, &,y
1 A2 1 A2
o= AN _34x10°5 L= AN g 16x10%s
2|\/|i80]/ 2megoy
1 2
W'y = M =3.4,/n x10"s™ = Zyn'y e - 2.295\/Zx109571
2M,&,7 2m e,y
1 A2
= Zyn'.e —537x10%s = Z,Z,n e’ _1.91x10°%"
2m, &, 2m &,
(3.146)
where

n’,=m, =3.3x10"m>
n' =sm =53x10"m>

The cyclotron frequencies are defined as



& = % — 4.82x10°s7 (3.147)
cl
o, =58 _1 93,1055 (3.148)
m;y
=5 _g79x10% (3.149)
m,y

Following the procedures from (3.28) to (3.52), the equations of motion for the beam
centroids R;, R,and the centroid of the ion cloud R, can be derived as

d? d

WZ +io', dtZ+a) (Z, - Z) 02, (Z,-2,)=0 (3.150)

TN 2 -2) +iNG (2, -2,) =0 (3.151)
2

FZCI + |(0) ccl_lr ) .ch + 60 cle (Z Ze) - a)Ch (Z ) 0 (3152)

where

A =2d =757x10°%s™

l2
=2l =1 x5.99x10°%s™

ce

Al

ecl

Set the trial solution to be

Zyia =8, g8 @ (3.153)

e,i,cl

Equation (3.153) is written in the lab frame and the wave number is given by the periodic
condition for the ion cloud,

K=" (3.154)

° R

where n is the harmonic number and R is the radius of the ring.

Inserting equation (3.153) into (3.152), one gets

—a,0°+(0'  —Me'a, +0?, (3, -a,) -0 (@, —a)=0 (3.155)
, which can be rewritten as

_T(a))(a)cle e cI| |) (3156)

where



N -1
T(e') = (-0 ) (@) (3.157)

and the resonant frequencies ', , are defined as

QIl,Z = _Izrl—i_%[a)'ccl i\/(a)lccl _irl)Z + 4(a)lile _a)fli

(3.158)

Inserting (3.153) into equation (3.150), (3.151) and using (3.152.1), one gets

(~0*)a, +0wo';a + 0" (8, —a,) - o, (8, —a,) =0 (3.159)
(iw)a, +iA',; (a8, —a) +iA',, (8, —a,) =0 (3.160)
where

= w'—ck, (3.161)

Inserting (3.156) into (3.159) and (3.160), one gets

[a)z — 0O+ _a"iz+a’li2c| a’lin T (a)')]ai + [a).lze _a)lizcl a)lile T(w')a, ]ae =0 (3.162)

ecl cli

[A' T (a)-)a)-Z _A'ei i + [Alecl _Alecl T (a)l)a)lgle —0+ AIei e = O (3163)
For non-zero solution, the determinant of the coefficient matrix must be zero, which
gives the dispersion equation, which can be solved numerically for three eigenfrequencies

and the solution of (3.150) , (3.151) can be written as

D a et (3.165)

,a

3
Z,

a=1
J— 3 . .
Z.,=> a, e’ (3.166)

e,a

a=1

Forn =10",T"=0.1x Re(Q',), as an example, the eigenfrequencies are

1.9x10° —i3.6 x10*s™
®=16.4x10"-i2.3x10°s™* (3.167)
7.6x10°s™

Equation (3.165) and (3.166) has the same form as (3.61) and (3.62). Following the same
procedures from (3.63) to (3.97), the increments of the eigenvalues can be calculated for
certain ion cloud damping rate I""and neutralization factor .

Fig.16 shows the calculation results of the instability increments for different
neutralization level. From Fig.14, the threshold of the neutralization lever for an unstable
ion clouds transverse motion is about 7x10°%, which corresponding an increment of
0.01 per revolution. The neutralization level is also limited by the vaccum quality and the
geometry of the cooling section.
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Fig.16 plots the eigenvalue increment as a function of the neutralization factor for I"'=0.1x Re(Q',) and

parameters above (3.146), which shows the coherent instability strongly depends on the neutralization
factor.

Section 3.4 Coherent instability in the presence of wiggler
Section 3.4.1 Transversal dipole coherent instability

For the wiggler field, the magnetic field in the lab frame is

B, =0 (3.168)
275

B, — B, cos(*" 3.169

X cos( 7 ) (3.169)
. 278

B, = B, sin(-" 3.170

, sin( e ) (3.170)

where B, 4, are the magnitude and the wavelength of the wiggler field respectively.
Equation of motion for a single electron in cooling section with Wiggler field

2 efcs x B,
m.y

3

FF; = wlf)e (f; - Iie) - a)lsi (f:e - I3|) - (3171)



The centroids equations of motion in x plane are
2
eB
— X, =-0Q% (X, - X,)+—
dsz e ei ( e |) .
2
X, =0 (X, - X,) - o
ds M

where

sin(QY',, s) (3.172)

sin(QY',,s) (3.173)

ie C
Q' — a)lei
C

o,
A

w

Subtract (3.173) by (3.172),

2 ~
ds_zx‘e +Q72 X, = fsin(Q',s) (3.174)

where
Qi-0i+0z
eB, 1+ zm,
m,jC M;
Xie = Xi =X,
Equation (3) is a forced hamornic oscillator and makes the trial solution to be
X, = Asin(QY', s) (3.175)
and inserting (3.175) into (3.174), one gets

O f
Thus one of the particular solutions of (3) is

P

)

f .
X =——sin(Q',s)
0,

The general solution of the homogenous equation of (3.174) is
X$ = A(2)cos(Q,s + (2))
Thus the overall solution of (3.174) is

Xie = Xig + Xi8
. £ _ ' (3.175)
= A(z)cos(QY', s+ ¢(2)) + msm@ wS)
Set the initial condition to be:
X.(z,0) :%Xe(z,O) =0 (3.176)

Thus the equation of motion for the ion center is



VI , Sin(QYS) v o f
— X =-Qf |:COS(QOS)Xi(O)+—Q. (X' (z,0) —Q'Z—Q'Z Q')

ds?
0 o T (3.177)

l2 A
|2 7 2B G, s)
Q O_Q w i

Integrate equation (3.177), one gets

X, X,

X 'i = Mtransverse X 'i (3178)

1 S 1 0
where

1+ &'(cos(€Y, 5) ~1) Qi,[g'0 S(L—&)+ Esin(@,s)] a(s)

0

Miransierse =| =& Q7 8IN(Q ) 1+&"(cos(€Yy5) -1) a'(s)| (3.179)
0 0 1
and
a(s) = - f& §YV (sin(Q';s) —Q'ys) | & - ZeB, (sm(QWs)Z—QWs) (3.180)
1_§W £2'0 Q'W 1_§w M|7’C Q'W
.2
=gt
0
1 Ql|ze
“Tar
0
The transfer matrix for the ring is
M ring = Rx LdriftMtransverse Ldrift (3181)
where
cos(2zv,)  p.sin(2zv,) 0
R =| Lsin@rv) cos@rv) O (3.182)
T 0 0 1
1 -E oo
2
Ly =/0 1 O (3.183)
0 0 1

For the parameters listed in table 3, the transfer matrix, its determinant increment and the
eigenvalue increment for the ring are

! The plasma frequencies and the wiggler frequency for the parameters listed in Table 3.are
Q,=341x10"rad /m (', =568x10"rad/m Q';=5.69x10"rad/m Q' =41.89rad/m f =—0.0586m/m?
£'=358x107° ¢ =5.43x10" a(60)=2.44x10°m a'(100)=2.89x10°m/m



Wiggler field strength 0001 T
Wiggler field wavelength 0.15m
Cooling section length 60 m
Electron beam size 2.36 mm
Electron rms bunch length 9mm
Electron beam charge 5nC

Electron Density

2.96x10"° m™®

lon beam horizontal tune 28.23

lon beam vertical tune 29.23

lon beam charge 12.64 nC

lon rms bunch length 0.37m

lon beam size 2.36 mm

lon beam density 2.31x108 m™2

Table 3. The parameters for the current non-magnetized electron cooler design.

0.109 0.993 2.004x107
M, =| -0.995 0.107 -1.562x10"°
0 0 1
uransverse| ~ 1= —2.0x10°
|M transverse| —1=-4.0x10"°

(3.184)
(3.185)

To obtain the threshold for the instability, the determinant and eigenvalue increment are
plotted as a function of the electron beam density in Fig.17, which is the same as the
straight section case. Thus the threshold for transverse dipole instability is

n' =2.99x10*m™

which is three orders of magnitude larger than the current electron density.
Transverse Instability Growth Rate

(3.186)
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Fig.17 The increment of the determinant and the eigenvalues of the transversal transfer matrix for the ring.




Section 3.4.2 Longitudinal dipole coherent instability

Since the wiggler field does not affect the longitudinal motion, the threshold for the
instability due to Langmuir oscillation can still be determined from equation (2.19) and
(2.22).

As shown in Fig.18, the threshold for the determinant less than one is reduced to

n™ =3.1x10"m™> (3.187)

o =
and for the eigenvalue less than one is reduced to

n™ =7.7x10"%m (3.188)

A =

After including the rest of the RHIC ring, the threshold from the eigenvalue is the same
as what from the determinant limitation, which is shown in Fig.18 and described in
Section 2.4. Since the cooling section is much longer than the magnetized cooling design,
the maximal growth rate is bigger than the synchrotron tune and the instability could
happen before the synchrotron motion distorts the longitudinal plasma oscillation. The
electron bunch length threshold can be estimated from equation (3.187) and Table 3 +

to be

th
I, =1.1cm
5.10°° g
4-10
o
g —5
E Amodk(n e)O 2-10
g Amodkring(n e)l
‘% Adetring(n e) -
E/ — -2 _10_5
-4-10 °
_5.10°°
1-10%° 1-10%° 1-10%7 1-10'®
10%° Ne 108

Electron Density In Lab Frame (m”™-3)

Fig. 18 The increments of the determinant and the eigenvalue of the longitudinal transfer Marix for

parameters listed in table 3. The x axis is the electron density in beam frame in units of mthe light blue
line shows the synchrotron tune, 3.7 x10™ and other curves have the same definition as Fig.4.1.



Appendix1: Equation of motion for single particle

In this section, we get the solution for the ion beam centroid motion in the cooling section
due to its interaction with electron beam. However it will be necessary to know the
behavior of each single ion in the ion beam for the purpose of simulation. The equation of
motion for single ion particle can be derived as the following. Consider equation (3.9)

2

prel ,—(a) i)ﬁ+a),eRe a)p,R, (3.25.1)

Since we already derived the solution for R, we only need to find the behavior of the
electron centroid to get a explicit form of the single ion equation of motion. From (3.13)

R —R. =R (2,0)cos(yt) + M & 7. 0) (3.25.2)
0
Thus, we get the solution for R,
R =R R (2,0)cos(agt) — SNV & (7.0) (3.25.3)

Wy
Insert (3.25.3) into (3.25.1)

2

a sin(apt) 5
dt?

r= (a); —)f + (@ — a)ﬁi)ﬁi - a)ii|:F_éi (z,0)cos(eyt) + ———=

@,

R.(z 0)} (3.25.4)

Insert equation (3.20) into (3.25.4)

R (z,0)

@,

- h- (a) —o)f = (ég(a’ui - a)si - a)ie{ sin(e,t) + Ri(z,0) cos(a)ot)]

(3.25.5)
+ (- &) (g - a);)[ﬁl (z,0)t+ R (z,0)

Thus, the single ion equation of motion inside the solenoid is like a driving oscillator

2
37r. — (w5 — )T = T (1) (3.25.6)
where f (t)is the driving force and given by
ﬁi (z,0)

@y

f(t) = (£(ws - a’é.) - oy) sin(wpt) + R, (2,0) COS(a)Ot)] +(1-&) (g - wﬁi R;i (z0)t+R, (2,0)]

(3.25.7)
Since for our case, £issmall,



0

f(t) ~-o? Ri(z.0) sin(w,t) + R, (2,0) cos(a)ot)} +(0f -0} )[ﬁi (z,0)t + R (2,0 (3.25.8)
[0

In the presence of a solenoid, the single ion motion can be described by equation (3.29)
or

szzﬁ :—a)ii(ﬁ—ﬁe)+a)§i(ﬁ—ﬁi)+a)ci(%ﬁx§) (3.100.1)
Write the above equation into the vertical and horizontal plane,

dezxi = -5 (X — X,) + o (% —Xi)+a)ci%yi (3.100.2)
d? 2 2 d

prenl = - (Y; —Y,) + @y (Y —Yi)—a)ciaxi (3.100.3)
(3.100.2) +i(3.100.3) =

Ol—zzzi =—wg(z,— Z,) + 05(z, - Z,) — i, izi (3.100.4)
dt dt

Here z describes the single ion position and defined as

Z; = X +1y; (3.100.5)
Equation (3.100.4) can be rewritten as

d—zzzi +iw, iZi — (0% - 02)7; = woZ, — w5 Z, (3.100.6)
dt dt

From (3.73),

Z,(t) =m,Z,(0) +m,Z (0) (3.100.7)
Z,(t) =m,,Z,(0) +m,,Z,(0) (3.100.8)

wherem,,;,m,,, my,and m,, are defined in (3.76)-(3.79.2)

Thus the equation of motion for a single ion is

2
%zi +ia, %zi — (0} - @)z, = £ (1) (3.100.9)

where the driving force f (t)is defined as the following
f(t)= (a)izemsl - a)ii m;,)Z;(0) + (a)iim32 - a)ii le)Zi (0) (3.100.10)

We obtained the equation of motion of single ion and by numerically integrating the
equation of motion, the beam behavior can be predicted.



Appendix2:Transverse Transfer Matrix Elements Definition

The matrix elements of the complex matrix M, can be obtained from (3.72) as the
following,

_ a)z(e_i"“lt —Tl)—a)l(e_i""2t —T2)

M ,1-T,)-o,(1-T,) (3.76)
m, - i(T, —1)e ™ —i(T, —1)e " +i(T, - T,) (3.77)
,1-T,)-o,1-T,)
io,m,e” " —e
Mo = wz(llf%)_ a)l(l—Tz) ] (378)
- o, M (1-T,)- we ™ [1-T,) (3.79)
,1-T,)-w,1-T,)
To,(e" -1) -T,w, ("™ -1
= Z(a)z(l—Tl))—ajl(ll(—Tz) : (3.79.0)
T, (T, —1)e ' —iT,(T, -1)e”"* +i(T, - T,

Q= a)z(l—le)(Ea)l(i—Tz) Bt (3.79.2)
The matrix elements for the corresponding real and imaginary part of M, A ;and
B, are

w,(cos(at) —T,) - w,(cos(w,t) —T,)
A, =
w,(1-T,)-o,(1-T,)
A, - (T, —1)sin(aw,t) - (T, —1)sin(w,t)
w,(1-T,)-o,(1-T,)
A, = w,0,(sin(w,t) —sin(at))
,(1-T,)-o,(1-T,)
A, =2 (1-T,)cos(w,t) — ,(1-T, )cos(m;t)
w,(1-T,)-o,(1-T,)
w,(sin(wt) = T,)— o, (sin(w,t) - T,)
Bll - —
,(1-T,)-o,(1-T,)
B - (T, —1)cos(at) — (T, —1)cos(awst) + (T, = T,)

a)z(l_Tl)_a)l(l_TZ)



_ w,0,(cos(w,t) - cos(a;t))

B a’z(l_Tl)_ wl(l_TZ)
_o(1-T,)sin(ot) — @, (LT, )sin(w,t)
B a)z(l_Tl)_a)l(l_TZ)

BZl

BZZ

The transfer matrix for the ion clouds motion within the solenoid, M, has the following
elements

—ioyty -ty
_oe ,e

m;, (3.125)
0 — W,

mlz _ 1 |:|(ﬂ _1)e—i(a)zt1+wcc|tz) _ i(&_l)e—i(%q-%—{ucdtz) _ ii(a)le—ia)zt1 _ a)ze_iwltl)}

O — W, ccl (8 W)

H oty p-lont
m, = o0, (e e ')
w — w,

m,, = 1 [a)2 (0, - ) g i (@drots) (0, —ay) g i@ltat) _ “w, (efiwztl _ eiwﬂl):|

o, — W, @ Wl (28]
Matrix M, can be rewrite into a complex form,
M,=A+iB (3.127)
where,
A:(pﬁl Aizj (3.128)

An Ay

B, B
B =[ H 12j (3.129)

BZl BZZ
and the matrix elements are given as the following,

_ o, cos(m,t,) — w, cos(at,)
W, — @,

As

@, Sin(ayt,) — o, sin(w,t,)
B, =

w, — W,

(@, — @) sin(a,t, + oy t,) — (@, — oy ) sin(at, + o,
o) (a)l - a)z)

t,) — @ sin(w,t)) + @, sin(ayt,)

ccl

A, =

B — (0, — o) cos(w,t, + wt,) — (w, — w,y) cos(mt, + wyt,) — @, CoS(w,t,) + w, cos(at;)
12 =
D (a)l - a’z)




0,0,

A= (sin(ayt,) —sin(mwyt,))
), — @,
),
B,,=——2-(cos(mt,) — cos(w,t,))
) — W,
A, = @, (0, — @) COS(@oty + Wty) — (@, — Dy ) COS(LLy + Wiyt ) — W, (COS(,t,) — COS(at, ))
? W ((01 - (02)
B —_% (@, — @) sin(w,t, + oyt,) + @ (0, — o y)sin(at, + oyt,) + oo, (sin(w,t,) —sin(at,))
# (2 (a)l - 0)2)
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