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�

Beam�Beam�Interaction�Study�in�ERL�Based�eRHIC�

 

There is growing interest in physics community in building high energy, high 

luminosity polarized electron-ion collider in order to study the fundamental structure 

of nucleons and nuclei and details of QCD theory governing the interaction in nuclear 

matter. eRHIC will take advantage of existing RHIC ion collider at BNL with addition 

of an electron accelerator to provide orders higher luminosity compared with RHIC.   

There are several unique features of beam-beam effect, special for the linac-ring 

design.   The features include: electron disruption effect by beam-beam interaction; 

proton beam instability of head-tail type (‘kink instability’); pinch effect of electron 

beam and related proton beam dynamics and emittance growth; turn-by-turn noise of 

the electron beam and its impact on the proton beam.   

Through analytical calculation and simulation, all special features above are 

studied carefully.  The electron disruption effect and distribution distortion can be 

controlled by proper electron lattice and initial rms emittance.  Large initial rms 

emittance (5nm-rad) and small waist beta function (0.2m) can reduce the mismatch 

between electron distribution after collision and design lattice and the electron 

distortion due to nonlinear force.  This set of electron beam parameters also 
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decreases the emittance growth of proton beam.    

Analytical approach and simulation also shows the kink instability induced by 

beam-beam force has threshold which is more than ten times smaller than design 

parameter.  Proper tune spread is necessary to suppress fast proton emittance growth.  

Simulation shows a chromaticity value 7 to 8 is optimum for rms energy spread 

5×10-4.  The tune spread can also be achieved by nonlinear lattices such as octopoles. 

The effect on proton beam, due to turn by turn noise from fresh electron bunch is 

also estimated.  Both dipole and quadrupole errors and their consequence are 

analyzed.   The criteria are brought out for certain proton lifetime. 

In one word, the ERL based eRHIC is a promising design for RHIC upgrade 

from beam-beam interaction study.  It provides a versatile way that delivers 1033 

cm-2s-1 luminosity for future nuclear physics research. 
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1. INTRODUCTION�TO�ERHIC�PROJECT�

1.1. From RHIC to eRHIC 

Relativistic Heavy Ion Collider (RHIC)[1] is a heavy ion collider at Brookhaven 

National Laboratory (BNL) operated since 2000, followed by 16 years of 

development and construction.  It accelerates heavy ion (such as gold) to top energy 

of 100 GeV/u or polarized proton to 250 GeV and brings out head-on collision. 

The objectives of RHIC are to study the state of matter formed in the first 

microseconds of early universe and to study spin origin and structure of proton. With 

very high energy in center of mass (200 GeV/u for gold nuclei, 500GeV for proton), 

we can create very high matter density and temperature condition and expect nuclear 

matter to undergo a phase transition and form the plasma of quarks and gluons.  This 

transition and property of quark gluon plasma can be predicted by the theory called 

Quantum Chromo Dynamics (QCD) which describes the strong interaction.   

Initially, the proton and ion beams are generated from Tandem Van de Graaff and 

then accelerated by Linac accelerator to 200MeV.  Then the particles will be 

transported to AGS booster and then AGS (Alternating Gradient Synchrotron) ring 

and be accelerated to 99.7% of speed of light before exiting (velocity depends on type 

of nuclei).   The AGS serves as injector of RHIC ring. 
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For main part of RHIC, two concentric superconducting magnet rings (noted as 

yellow and blue respectively) were built in a ring tunnel.  Beams are counter-rotating 

in two rings, accelerated from injection energy and then stored at top energy.  There 

are six intersection points along the circumference located at twelve (IP 12, similar for 

other collision points), two, four, six, eight and ten o’clock position, where two 

counter-rotating beams collide with each other.  Currently, the two experiments, 

named by STAR and PHENIX, locate at IP6 and IP8 respectively.  The design 

luminosity at top energy is 1�1031 cm-2s-1 for proton-proton collision and 2�1026 

cm-2s-1 for gold-gold collision.  Here luminosity is the most important parameter of 

collider performance and represent the collision rate per unit area per unit time, 

usually expressed in cm-2s-1.  Explicitly, it is defined as below if both beams are 

Gaussian distribution in both transverse directions.  

 1 2
2 2 2 2
1 2 1 22 x x y y

N N fhL
� � � � �

�
� �

 (1.1) 

Here, subscription 1 and 2 denote 2 beams respectively.  N is the bunch intensities. f 

is the revolution frequency; h is bunch number in the ring.  Horizontal and vertical 

rms beam sizes at collision point are �� and ���� � Also, we assume that both beams 

bunch lengths are short (infinitesimal bunch length). 
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Figure 1.1: RHIC layout from sky�

As an important upgrade of RHIC, eRHIC[2, 3] is brought out as an advance 

experiment tool to answer more questions of fundamental structure of matters, such as 

the structure (both momentum distribution and spin properties) of hadrons, the role of 

quarks and gluons with dynamics of confinement, etc.  Also, eRHIC can provide 

more precise instrument to explore and test the theory of QCD itself in the extent of 

many-body and other aspects. 

In order to make eRHIC be an attractive tool, the following aspects must be 

achieved: 

� Collision between electron beam with various nuclei (from proton to 
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heavy nuclei) 

� The energy of electron beam and nuclei is adjustable over a large range 

� Higher Luminosity (order of 1033 cm-2s-1) 

� High polarization for both electron beam and proton beam 

To fulfill the requirements above and control the cost, eRHIC will take 

advantage of existing RHIC ion collider with addition of an electron accelerator, 

which will generate high intensity high quality electron beam.  An upgrade will be 

made in the RHIC ring including transverse and longitudinal cooling to reach the 

required beam quality.  The designed parameter for eRHIC will reach, 

� 5-10 GeV electron beam energy 

� 50-250 GeV proton beam energy, 100GeV/u Au ions 

� 70% polarization for both electron beam and proton beam 

In the eRHIC design, there is capability of operating both ion-ion and 

electron-ion collision at same time, which is called ‘parallel mode’, instead of 

electron-ion collision only, referred as ‘dedicated mode’.  In this thesis, we only 

discuss dedicated mode, in which ion beam only with electron beam once per turn. 

1.2. The First Linac-Ring Collider 

Presently, there are two possible designs for the proposed electron accelerator.  

One design is called ring-ring design.  In this scheme, the electron beam is generated 
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from a polarize electron source and accelerated in recirculating linac injector to 

energy of 5 – 10 GeV.  After the electron beam reaches top energy, it will be injected 

to newly-built electron storage ring.  The storage ring intersects with RHIC blue ring 

at one existing interaction point (currently at IP12).  And new detector, special 

designed for electron–ion collision, will be built at that interaction point. 

Currently the parameters for ring-ring option are listed in Table 1.1.  We can 

find that the luminosity in this scheme is about half of the design order 1033 cm-2�s-1.  

Table 1.1: eRHIC parameter, Ring-Ring Scheme 

 
High energy setup Low energy setup 

p e p e 

Energy (GeV) 250 10 50 5 

Number of bunches 165 55 165 55 

Bunch spacing (ns) 71 71 71 71 

Bunch intensity (�1011) 1.0 2.34 1.49 0.77 

Beam current (mA) 208 483 315 353 

95% normalized emittance 

���mm·mrad� 
15  5  

Rms emittance (nm),x/y 9.5/9.5 53.0/9.5 15.6/15.6 130/32.5 

�* (cm), x/y 108/27 19/27 1.86/0.46 0.22/0.22 

Beam-beam parameters, x/y 0.015/0.0075 0.029/0.08 0.015/0.0075 0.035/0.07

Rms bunch length (cm) 20 1.2 20 1.6 

Polarization, % 70 80 70 80 

Peak Luminosity, cm-2s-1 0.47�1033 0.082�1033 

Aside from ring-ring option, there is another scheme named ‘Linac-Ring’ 

scheme.  The idea is easily derived for its name.  The electron beam will be 

accelerated by a Linac accelerator and directly transport to interaction region.  When 



Introduction to eRHIC Project  6 

 

collision process at IP finishes, the electron beam will be dumped after its energy 

being recovered.  This will be the world first Linac-Ring collider.  Parameters of 

Linac-Ring scheme are listed in Table 1.2.  There are many advantages in 

Linac-Ring scheme compared with Ring-Ring scheme.  All attractive merits come 

from the idea that we have fresh electronic bunch in each collision.  From the 

comparison of two tables, we can easily discover the most important one, the 

luminosity enhancement from 0.47×1033 to 2.6×1033 cm-2s-1.  In Linac-Ring option, 

we can apply larger beam-beam force on electron bunches hence achieve higher 

luminosity.  Beside the luminosity enhancement, other significant advantages 

include full spin transparency for all energies; longer drift space for detector in 

interaction region, easily upgradeable option for higher electron energy (20GeV) and 

wider electron energy range.  

 
Figure 1.2: Layout of eRHIC Linac-Ring scheme 
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Table 1.2: eRHIC parameter, Linac-Ring Scheme 

 
High energy setup Low energy setup 

p e p e 

Energy (GeV) 250 10 50 3 

Number of bunches 166  166  

Bunch spacing (ns) 71 71 71 71 

Bunch intensity (�1011) 2 1.2 2.0 1.2 

Beam current (mA) 420 260 420 260 

95% normalized emittance 

���mm·mrad� 
6 115 6 115 

Rms emittance (nm), 3.8 1.0 19 3.3 

�* (cm), x/y 26 100 26 150 

Beam-beam parameters, x/y 0.015 2.3 0.015 2.3 

Rms bunch length (cm) 20 0.7 20 1.5 

Polarization, % 70 80 70 80 

Peak Luminosity, cm-2s-1 2.6�1033 0.53�1033 

The Linac-Ring scheme is preferred with all advantages listed above.  Since 

this is the first proposed linac-ring scheme collider, there will be many unique 

features distinguished from traditional ring-ring or linac-linac colliders.  In this 

thesis, we will focus on new features of beam-beam effect and discuss the 

countermeasures of prospected side-effects of this layout.  From Table 1.2, the 

transverse beam sizes for both beams are the same (�px= �py, �ex= �ey).  In many 

formulas in the following chapters, we will take advantage and not distinguish rms 

beam sizes of two transverse directions.  Without further notice, we will only discuss 

dynamics property in x direction (horizontal) from now on.  The same result is 

expected from vertical direction due to symmetry.  
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To achieve high luminosity collision in eRHIC, proper cooling is necessary for 

preventing degradation of the proton beam quality.   Currently, four cooling 

methods are brought out, including stochastic cooling[4], electron cooling[5], optical 

stochastic cooling (OSC)[6] and coherent electron cooling (CEC)[7].  Coherent 

electron cooling is the most efficient way according to theoretical estimation and 

simulation. 

Table 1.3: Comparison of different cooling method 

Particle species 
Energy 

(GeV / u) 

Approximate Cooling Time (Hour) 
Stochastic 
Cooling 

Electron 
Cooling 

CEC 

Proton in eRHIC 325 1 1 0.05 
Gold in eRHIC 130 100 30 0.3 

 

1.3. Energy Recovery Linac 

The electron accelerator in eRHIC is designed to be an energy recovery linac 

(ERL) to provide both high energy efficiency and high electron beam current.  

ERL[8] has a long history, tracing back to more than three decades.  It 

combines the advantages of both linac and ring accelerators and has the potential to 

provide high current, short pulse and excellent beam quality at same time.  An 

obvious application for ERL is to provide high peak current electron beam for 

synchrotron radiation light source or free electron laser. 
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Figure 1.3: Energy Recovery Linac layout in eRHIC and the electrons in main ERL 
with accelerating phase (red dots) and decelerating phase (blue dots). 

In the ERL base eRHIC scheme, the electron beam is accelerated from the source 

though a superconducting RF cavity (main ERL in Figure 1.3) and transported 

through electron beam pass along arrow direction.  If the electron energy does not 

reach the desired energy, the electron will be transferred one turn back to main ERL 

with correct phase (acceleration phase) and accelerate again until desired energy is 

reached.  Then the full energy electron beam will collide with the proton beam at 

interaction region.  After collision, the electron beam will be transfer back to main 

ERL with decelerating phase, which has � difference with the accelerating phase.  

The high energy electron beam with decelerating phase will pass its energy to RF 

field in the main ERL.  This portion of energy will be used to accelerate low energy 

electron beam with accelerating phase.  After energy loss process in main ERL, the 

electron beam will be terminated at beam dump with very low energy.   
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Compared with conventional Linac accelerators, the power needed by ERL is 

reduced dramatically.  Therefore, much higher average current can be achieved 

compared to a linac without energy recover scheme. 

Compared with storage ring accelerators, the ERL does not recirculate the 

electron beam itself; it only retrieves the electron energy.  The electron beam does 

not have sufficient time to reach its equilibrium state due to synchrotron radiation and 

quantum excitation.  Therefore, the electron beam quality mainly depends on the 

source which is much better than the equilibrium state in storage rings.  However, 

currently the average beam current in ERL cannot reach the typical current in storage 

ring (order of Ampere).  In ERL the achievable average current is in order of 100 

mA. 
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2. OVERVIEW�OF�BEAM�BEAM�EFFECT�

Beam-Beam effect is the most important factor that limits colliders achieving 

higher luminosities.  This chapter reviews key points of beam-beam interaction 

generally and special features in designing ERL based eRHIC project.    

2.1. Charge Distribution and Field 

In collider, beam-beam effect refers to the interaction between two colliding 

beams via electro-magnetic field.  The section where two beams intercept with each 

other is called interaction region, which is usually positioned in a drift space.  In 

modern colliders, beam-beam effect becomes one of the most important factors that 

limit the luminosity.   

During collision, one moving bunch generates both electric field and magnetic 

field.  The fields will exert on itself and the opposite beam simultaneously.  The 

force on itself is called space charge force.  At very high energy when the speed of 

the bunch approaches speed of light, the space charge force vanishes.  The force 

applied on the opposite beam is called beam-beam force, which will be enhanced in 

the high energy case.  

Before further discussion, we make assumptions that both beams are relativistic 
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where �� � �   and !� 	�  , the electromagnetic field is only in transverse 

two-dimension space.  Also we only discuss the head on collision which excludes 

collisions with crossing angle.  The assumptions we made are very suitable for 

eRHIC without losing physics details.  

The most general charge distribution model is Gaussian distribution in two 

transverse dimensions, written as: 

 
2 2

2 2

( )( , ) exp( )
2 2 2x y x y

n z e x yx y

�� � � �

� � �  (2.1) 

Where n(z) is the line charge density, and transverse rms beam sizes are represented as 

�� and ��.  From charge distribution (2.1), one can derive the electric field from its 

scalar potential U, and the electric field has the form: 
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�� �� �� � � ��� � � �� �� � � � � �� �� �� � � �� �� �� � �� �� �� �� �

� �� �� �

 (2.2) 

This was derived by Bassetti and Erskine.  In (2.2), "#$% is the complex error 

function defined as: 

 � � � �� �2 2( ) exp erfc( ) exp 1 erf( )w z z iz z iz� � � � � � �  

For eRHIC case, the vertical and horizontal rms beam sizes are identical.  The 

expression (2.2) can be simplified as: 
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It is notable that ��� &� �� is not a singular point in (2.2).  We can plot the field 

amplitude as Figure 2.1.  The field maximum reaches at 1.85�.  Below 1 rms size, 

the field is almost linear. 

 

Figure 2.1: Beam-Beam electric field amplitude of transverse symmetry Gaussian 
beam 

Then the magnetic field can be calculated as: 

 /B E c�� �
�� �

 (2.4) 

Above, �c is the velocity of moving bunch.  This is obvious if we investigate the 

bunch from the moving bunch rest frame, where the magnetic field vanishes.  Then 

Lorentz force exerted on particle of the bunch itself F11 (space charge force) and on 

particle of the opposite bunch F12 (beam-beam force) can be expressed respectively: 
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As what we stated before, the space charge force vanishes as the particle velocity 

approaches c, while beam-beam force is enhanced.   

Consider near axis case of equation (2.2), the field is linear in both transverse 

directions. The electric field reduces to: 
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E y

�
��� � �

� � � �
�� � � �

�� � � �
 (2.6) 

We can see that beam-beam force is linear near axis, which is similar to the case of a 

thick quadrupole.  But this ‘beam-beam quadrupole’ focuses or defocuses in both 

transverse directions.  If the bunch is very short, equivalently '#$%� &� 	(#$%, the 

beam-beam effect can be modeled as a thin quadrupole near axis.  Focal lengths of 

the beam-beam effect are given as: 
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 (2.7) 

Here, N is the total particle number in the bunch, r0 =e2/(4��0mc2) is the classical 

radius of particle in opposite bunch who exerts the field, C1C2 is the charge number of 

particle from two colliding bunch.  We already assume that both bunches are highly 

relativistic, i.e. � = 1, which will hold throughout the thesis.  Without further notice, 

� will represent the beta function below.  For RHIC proton-proton collision, the 

beam-beam force is defocusing, C1C2 =1; for eRHIC electron-proton collision, C1C2 

=-1.  
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Now we can introduce the beam-beam parameter, one most important parameters 

in beam-beam dynamics.  The beam-beam parameter ) is defined as: 

 
*
,

,
,

1
4

x y
x y

x yf
�

�
�

�  (2.8) 

Here, !* is the waist beta function at z = 0.  For eRHIC the beam-beam parameter for 

proton and electron are: 
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� �  (2.9) 

It is obvious that the physical meaning of beam-beam parameter is the tune shift 

created by linear beam-beam force approximation.   

From equation (1.1) and (2.9), we can summarize some useful rules to maximize 

the luminosity without increasing the beam-beam parameter. 

I. Set dispersion to be zero at interaction region. 

II. Set the interaction point at waist of beta function, i.e. * = 0 at IP 

III. Decrease the minimum beta (at waist) as small as possible. 

In actual designs, there are restrictions from choosing a too small beta function at 

interaction region.  A tiny beta function at IP may lead to unacceptable beta function 

outside interaction region and large radiation because of beam bending. 
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2.2. Incoherent Beam-Beam Limit 

From the beam-beam parameter ) defined in last section, we treat the beam-beam 

force as a thin length quadrupole.  Without beam-beam effect, a test particle has its 

trajectory around the ring, which can be expressed as a one turn map M(s0).  By 

choosing s0 to be the longitudinal position at interaction point, we can have the 

turn-by-turn coordinate of the testing particle at interaction point without beam-beam 

effect.  Then we can multiply a thin length quadrupole matrix K to the one turn map 

M: 

 
*

*

1 0 cos(2 ) sin(2 )
1/ 0 sin(2 ) / cos(2 )

K M
f

�� � ��
�� � ��

� �� �
� � �� �� �� �� � � �

 (2.10) 

Here, f is the beam-beam focal length defined in (2.7), !* is the beta waist function at 

interaction point, +� ,-� ./�'-0�/-�� .�'�.  The resulting one turn matrix including 

beam-beam effect gives, 
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 (2.11) 

 There is a tune change due to beam-beam kick.  We have: 
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 (2.12) 

If the beam-beam focus effect is very small, i.e. f � �*, we proved that the tune 

change ��=�*/4�f, which is just the definition of beam-beam parameter � in (2.9).   



Overview of Beam-Beam Effect  17 

 

The new one turn matrix Mt represents a stable motion only if the condition 

|Tr(Mt)| 1�2 is valid. This gives: 

 
* sin(2 )2 2cos(2 ) 2

f
� ����� ! � !  

And the linear stability criterion is given as: 
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 (2.13) 

Based on modern collider design, the beam-beam limits are about the order of 

0.01 to 0.1, far below the criterion in (2.13).  For example, in eRHIC design table, 

the fraction tune for proton ring is 0.685.  According to (2.13), the upper limit gives 

0.24, which is much larger than the design beam-beam parameter for proton.  As we 

will reveal later, this limit is the weakest constraint.  It is worthwhile to point out 

again that the beam-beam parameter for electron is not limited by the criterion 

discussed above.  This is the main benefit we can get from the linac-ring scheme. 

 

2.3. Hourglass Effect 

The hourglass effect comes from the beam size difference among various 

longitudinal positions.  The previous sections in this chapter are focused in 

transverse beam dynamics with the assumption that both beams are infinitely short 

and collide exactly at interaction point.  In real cases, each colliding beam has a 

finite beam length.  Particles with different longitudinal positions collide with the 
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opposing beam with different field and different tune shift. 

In interaction region, without beam-beam effect, the beam emittance remains 

unchanged and the beam size at s away from the IP gives: 

 � � � � � �20 / 0x x x x x xs s� � � � � �
 �� � �� �  (2.14) 

Figure 2.2 illustrates the hourglass effect for the eRHIC linac-ring scheme.  The 

electron beam (Green) is much shorter than proton beam (red).  Because the proton 

ring’s beta waist at IP is only about 0.26m, comparable with proton rms bunch length 

0.2m, different longitudinal proton slices transverse rms size varies about 50% during 

collision with electron beam. 

Obviously the hourglass effect results in changing of beam-beam parameters.  

For proton beam, particle at longitudinal position s has beam-beam parameter as: 
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The proton beam-beam parameter will have longitudinal position dependence.  

Combined with synchrotron oscillation, there will another reason for tune spread in 

additional to beam-beam force nonlinearity. 

The electron bunch is very short, so we can assume it has delta function longitudinal 

distribution.  The beam-beam parameter for electron has to be expressed by an 

integral:  
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Here, 	(s) is the normalized proton density distribution that electron meets at position 

s, which satisfies 2	(s)ds = 1.  And the luminosity formula will change to: 
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 ��� �
(  (2.17) 

It has been simplified by the fact that both beams are round.   

 
Figure 2.2: Beam rms size change, hourglass effect illustration 

It is easy to observe, due to hourglass effect, only the center part of beam collide 

with center of opposite beam at the designed transverse rms beam size at IP.  Both 

the head part and tail part will collide with larger rms beam size of itself and of 

opposite beam.  Then the luminosity defined in (1.1) will be degraded by hourglass 

effect because the equation (1.1) assumes the collision only occurs at IP with designed 

transverse rms beam size.  Typically the hourglass effect can be eliminated by 
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choosing same waist beta function �*. 

In eRHIC linac-ring scheme, hourglass effect cannot be cured and does not show 

significant effects because the electron beam is highly disrupted by proton beam.  

The deterioration will overwhelm hourglass effect.  But the equation (2.15)--(2.17) 

will hold for any effects that induce transverse size change and any proton 

longitudinal distributions.   

2.4. The Simulation Codes 

Since the beam-beam effect is nonlinear force, it is very difficult to analyze the 

beam-beam effect in theory thoroughly.  In order to study nonlinear dynamics and 

beam-beam effects of long time scale, we need numerical calculation methods.   

Now, two kinds of simulation exist to simulate the beam-beam effects.  One is 

called weak-strong model.  In this model, one beam is assumed as rigid beam and is 

not affected by beam-beam effect.  The beam-beam field of the rigid beam is 

calculated using equation (2.2), when transverse Gaussian distribution is expected, or 

directly calculated by solving Poisson equation with proper bounder condition for 

other specific transverse distribution.  Then the opposite beam undergoes the 

beam-beam field of rigid beam.  This weak-strong model is very suitable for 

retrieving the key nonlinear dynamics and easy to implement coding.  Usually the 

calculation time is short.  The drawback is also obvious.   

Strong-strong models have been possible to implement as the computation power 

improves [9, 10].  In this model, both colliding beams exert field generated by 

opposite beams.  Because the field calculation must be updated every collision, 

generally it is more time consuming compared with weak-strong codes.  As we 
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mentioned above, the field can be calculated from the real-time beam distribution.  

By setting grids in both transverse directions, one can put all particles in grids 

according to their positions and derive the field from convolution of density (the 

number of particles in each grid) and green function of certain Poisson equation with 

certain boundary condition.  This is usually referred as PIC (Particle In Cell) method.  

The PIC method gives self-consistent numerical solution for the beam-beam effect.  

But it is hard to implement coding and usually very time-consuming.  Most 

strong-strong codes using PIC employ parallel computing libraries and run on clusters.    

Much calculation time can be saved by always assuming the beam distribution as 

Gaussian distribution and determine the field using (2.2).  The median, amplitude 

and width of Gaussian distribution are variable and are calculated from real-time 

distribution.  Because the Gaussian distribution parameters are not rigid, we call it 

‘Strong-Strong model with Soft Gaussian distribution’.  In most cases it is 

adequately accurate and much faster than PIC method because we substitute the field 

solver with statistic characteristics of macro-particles. 

In order to investigate the special feature of eRHIC, I programmed a code for 

linac-ring asymmetry scheme particularly.  It simulates the ion beam in the ring 

undergoes turn-by-turn dynamics and collides with fresh electron beam from ERL at 

interaction point once per turn, as well as the status of electron beam after each 

collision.  In the code, the beam-beam field is mostly calculated by the soft Gaussian 

distribution method.   

The algorithm used in the code is straightforward.  First we generate 

macro-particles for proton beam of total number Np at interaction point. Each 

macro-particle has 6D coordinates (x, px, y, py, z, (), representing coordinate and 

momentum of transverse direction x and y, longitudinal position relative to the 

reference particle and momentum deviation 3p/p0 respectively.  The whole Np 

macro-particles have the designed rms values in all 6 coordinates with independent 
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Gaussian distribution.  Then, similar to proton beam, we generate macro-particles 

6D coordinates for electron beam of total number Ne with proper distribution and rms 

values. 

After preparing all macro-particles, we cut the proton beam into longitudinal 

slices.  The total slice number is indicated as ns.  Considering that proton beam is 

much longer than electron beam, we take electron beam as one slice, ignore its 

longitudinal size and choose ns to be around 25 so that slices from both beams have 

similar slice sizes.  Then we will calculate the beam-beam effect between electron 

slice and proton slices.  Each proton will collide once with electron beam at half of 

its longitudinal position z apart from IP.  We need to ‘unfold’ the proton beam as: 
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Because the transverse momentum px and py remain constant in interaction region if 

beam-beam force is absent.  The electron beam needs to be transported back to the 

position of first proton slice (head slice), and interact with proton beam slices in 

sequence while propagating forward.  The beam-beam interaction is expressed as: 
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The momentum with tilde represents the new momentum after beam-beam collision.  

The momentum change 3p is calculated from the field of opposite slice at transverse 

position (x,y).  The proton macro-particles which undergo beam-beam kick are 

‘folded’ to IP: 
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Note that the positions with tilde are updated using new momentum; we can easily 

find the Jocobians of both transverse directions are 1.  So the maps described above 

are symplectic. 
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This symplectic map refers to symplectic integrator of first order.  In the code, 

4th order symplectic integrator is another option, which runs slower but more accuracy 

compared with 1st order integrator for same time step. 

Then we simplify all other linear lattices in proton ring as one-turn matrix at IP, 

written as: 
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 (2.22) 

We did not use gamma function (
 =(1+�2)/�) above because of preventing confusion 

with the Lorentz factor gamma (
=E/m).  Since in eRHIC both beams are round 

beams, we will not distinguish transverse beta function and alpha function from now.  

To maximize the luminosity, one always set alpha function be zero at IP to get 

minimum beta function, hence minimum beam size.  Then map (2.22) reduces to 

second matrix in (2.10) on the right hand side.  At IP, the dispersion function is 

always set to zero, so the position is not directly related with momentum deviation (�� �

Longitudinal map is similar to transverse maps when the synchrotron oscillation 

amplitude is small.  In this case the oscillation is simply harmonic oscillation and the 

corresponding matrix reads:   
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Where k=�z/�� , 
 is called phase-slip factor.  In high energy storage ring as 

eRHIC proton ring, the phase-slip factor usually is positive, which is (1/�T)2.  

Sometimes, the nonlinearity of synchrotron oscillation has important effect, then we 

can use the following map instead: 
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Where E is the energy of beam, h is harmonic number, C is circumference of the ring, 

V is the RF voltage, and �s is the phase for synchronous particle.  The current 

parameters in RHIC and proposed RF parameters are listed in Table 2.1. 

Table 2.1: RF and related parameters 

RF Voltage 6 (MeV) 

Harmonic number 2520 

Circumference of RHIC ring 3833 (m) 

Transition energy �T of 08’ run  23.57 

By applying the maps to proton beam after beam-beam kink, we achieve the new 

coordinates of macro-particles for next beam-beam interaction with fresh electron 

beam with same initial distribution for each collision.  The old electron beam 

information will be dump for data analysis. 

After general description, we need to address the details of calculation the 

beam-beam effect each turn.  In order to investigate the effects related to different 
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longitudinal position in proton bunch, such as head-tail effect (discussed in chapter 4) 

and pinch effect (discussed in chapter 5) during beam-beam effect, we divide the 

proton beam into longitudinal slices.  If we simply allow the proton slices collide 

with electron beam individually, there will be artificial effects when synchrotron 

oscillation is included.  Due to synchrotron oscillation, one single particle may travel 

from one slice to another after one after one turn map.  Then, it will exert step 

function of beam-beam force between consequent turns when its longitudinal position 

is at the edge of one slice.  This fake effect may cause artificial emittance growth on 

proton beam. 

To eliminate this artificial effect with moderate calculation time, a ‘two pass’ 

procedure is performed.  In the first pass, the proton beam is assumed as a rigid 

beam; while electron beam property is calculate at center of each proton slices.  In 

second pass, the electron beam properties are interpolated at exactly the longitudinal 

position of each proton macro-particles.  Then beam-beam field is calculated for 

each proton macro-particles to get smooth interaction along longitudinal direction. 

Two interpolation methods are used in simulation.  First is the linear 

interpolation, which means that straight lines are used to connect ns discrete points.  

The interpolation is written as: 

 � � � �2 1
1 1

2 1

y yy x y x x
x x

�
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�
 (2.25)  

Where x1 < x < x2 is assumed.  The expression is simple and less CPU intensive.  

The possible drawback is the first order derivative of linear interpolation is not 

continuous, while the interpolation is continuous itself.   

The higher order derivative’s continuity can be assured by 3rd (cubic) order 

spline interpolation.  The interpolation function fi(x) where x is between two adjacent 
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discrete points, xi and xi+1, gives: 

 � � 3 2
3 2 1 0i i i i if x a x a x a x a� � � �  (2.26) 

Here subscript i is from 1 to ns-1.  The total spline 4(ns-1) parameters above can be 

solved by following conditions: 
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At boundary i=1 and i=ns-1, two conditions in (2.27) are invalid.  Therefore, there 

are 4(ns-1)-2 conditions.  We can freely choose two additional conditions to solve the 

spline parameters.  A boundary condition called natural condition is used in my 

code: 

 � � � �1 1 10 0ns nsf x f x�
.. ..� �  (2.28) 

The geometric meaning is that beyond the region of given points, interpolation 

function will be a straight line.  This is a fair solution for most cases.  The solution 

of interaction function is usually written as: 
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 (2.29) 

Sets of coefficients h and u are introduced for convenience, which are roots of the 

following linear equations: 
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The cubic spline interpolation is an excellent candidate to eliminate the artificial 

discontinuity effect up to first order.  However, it is more computation resource 

intensive than first order spline.  
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3. ELECTRON�DISRUPTION�EFFECT�

In eRHIC the effect of beam-beam interaction on the electron beam is much 

larger than the effect on the proton beam, as one can see comparing the beam-beam 

parameters in Table 1.2.  The electron beam is disrupted considerably by the 

beam-beam force just after one collision with protons, while proton beam distribution 

changes very slowly.  In order to investigate the evolution of electron beam in one 

collision process, we can assume proton beam to be rigid.  One can distinguish two 

different components of the electron beam disruption.  First, the nonlinear character 

of the beam-beam force distorts the beam distribution at high transverse amplitudes 

and increases the RMS emittance of the electron beam.  Second, the linear part of the 

beam-beam interaction (strong focusing) causes the electron distribution mismatch in 

the phase space with the aperture shape defined by the design lattice without 

collisions. Both effects need to be considered carefully to evaluate possible beam-loss 

after beam-beam interaction. 

3.1. The Linear Mismatch 

At the interaction region, no external electromagnetic fields exist in drift space, 

the only force exerted on electron beam is the beam-beam force from proton beam.  

Near axis, this force is linear.  The single electron motion can be calculated from 
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Hill’s Equation. 

 � �2 0x k s x.. � �  (3.1) 

Here, k(s) represents the beam-beam kick from proton beam.  We set IP as s=0, and 

positive s corresponds to the head of proton bunch.   Then electron beam travels 

from positive s to negative.  In order to avoid confusion, we will express all electron 

quantities in the proton coordinate frame in this chapter.  We know that the for 

electron-proton collision, the beam-beam effect is an attractive force in the transverse 

direction, i.e. k2(s) > 0.  The electrons will oscillate inside proton beam.  If we 

denote 4-(s) as the proton longitudinal distribution function where two beams meets 

and have 24-(s)ds = 1, k(s) has the form: 
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Above, �px is transverse rms size of proton beam; re is classical radius of the electron.  

The collision position is at s = z/2, so we can get 4-(s) from the real proton 

longitudinal distribution 4$(z).  The relation between two different functions gives: 
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After establishing the relation, we will use 4(s) = 4$(s) for simplicity.  Usually a 

Gaussian distribution is good model for longitudinal position, which is  
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Here �pz is the rms bunch length of proton beam.   
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 Before proceeding further, we need to define the disruption parameter d as: 
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The disruption parameter for the electron beam is about 5.78, comparing with proton 

disruption parameter 0.005.  Now (3.2) and Hill’s equation can be expressed using 

disruption parameter as: 
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The easiest thing that can be calculated from (3.6) is the electron oscillation 

wave-number under beam-beam force: 
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So, for single electron near axis, it will finish 0.25�5.781/2=0.6 oscillation periods.  

The envelope of electron beam will oscillate 2�0.6=1.2 oscillation periods[11]. 

Without beam-beam effect, the electron particle distribution always matches the 

design lattice.  When linear beam-beam effect is considered, there is extra phase 

advance in interaction region; therefore the phase distribution of electron beam after 

beam-beam interaction cannot match the design lattice.   

To make the discussion more quantitative, we can compare the beta and alpha 

functions between the value with beam-beam effect and design values.  The 
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difference between betatron amplitude functions determines whether the beam can 

match the design lattice.  The beta and alpha functions with beam-beam effect can be 

obtained from either statistics of the distribution, which can be calculated from code, 

or the envelope equation as shown below: 
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where k(s) is defined in (3.2).  The boundary condition is at the negative infinity 

away from IP before collision theoretically.  Due to quick attenuation of proton 

longitudinal distribution beyond 3 rms beam length, we can set the boundary 

condition at the entrance of interaction region where s = 3m.  The value of beta and 

alpha function can be calculated from their design values at IP as: 
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This evolution relation in drift space is just the solution of (3.8) when k(s)=0.  By 

solving the differential equation with non zero k(s), we can get the beta and alpha 

function evolution in whole interaction region with beam-beam interaction, as well as 

the values at the exit of interaction at s = -3m after interaction with proton beam.  

Then the two cases, with or without beam-beam effect, can be easily compared.   

In (3.8), if k(s) is proportional to a Gaussian distribution, the solution cannot be 

expressed in terms of fundamental functions.  An over-simplified approximation is 

to assume the proton bunch is very short, i.e. k(s) is proportional to ((0).  Then the 

beam-beam interaction is reduced to thin-length focusing quadrupole effect in both 

transverse directions.  As we know, the betatron functions evolve through a thin 
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length quadrupole as: 
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This gives conclusion that we have to set beta at IP be zero to minimize mismatching 

effect, which is obviously impossible to achieve.  But it educates us to seek for 

smaller beta for small mismatching effect.   

A numerical solver can give the exact solution easily.  According to Table 1.2, 

the designed beta waist is 1 meter and the waist position is at IP (s=0).  The solution 

of beta and alpha function in interaction region are shown in (a) and (b) of Figure 3.1. 

 
Figure 3.1: The numerical solution of equations in (3.8) is blue curve, while read 
curve corresponds to betatron amplitude function without beam-beam force.  In (a) 
and (b), the initial beta function minimum is 1 meter; in (c) and (d) the initial beta 
function minimum is 0.2 meter.  In all graphs, the initial beta waist position is at IP.   
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In Figure 3.1, the boundary condition is set at s=3m.  For large positive 

longitudinal position, two curves overlap with each other because the beam-beam 

force is too weak.  We observed that the mismatch is huge after collision if the waist 

�* is one meter.  From what we learned before, a smaller waist can contribute to 

reducing the mismatch.  The numerical result of �* =0.2m is shown in (c) and (d) of 

Figure 3.1.  The mismatch is much smaller than the case �* =1m.  Compare these 

two cases, it is notable that for �* =1m, the beta function after beam-beam collision is 

larger than the case without beam-beam effect; while for �*=0.2m, the result is 

opposite.  It is expected to have proper �* for perfect matching.  Then we are 

interested at the solution of: 

 � �
2

* *
*, 3 ss m� � �

�
� � � �  (3.11) 

Numerical solution gives �*=0.225m.  In Figure 3.2, we show the case with perfect 

match.  The betatron amplitude functions with beam-beam effect match functions 

without beam-beam force except longitudinal position near IP.  

 

Figure 3.2: The numerical solution of equations in (3.8) is blue curve, while read 
curve corresponds to betatron amplitude function without beam-beam force.  In (a) 
and (b), the initial beta function minimum is 0.225 meter, with waist position at IP.   

Although we found that waist beta function of 0.225m at IP eliminates the 
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mismatch after beam-beam interaction, this is only valid for linear beam-beam force 

approximation.  The result can be different when nonlinearity of beam-beam force is 

considered. 

3.2. Nonlinear Disruption Effect 

In the previous section, we discussed the electron distribution mismatch under 

linear beam-beam force.  Simple results can be achieved by solving a linear 

differential equation.  However, for electrons that are far from the axis, the 

beam-beam force is highly nonlinear.  The nonlinearity of interaction can distort 

electron distribution from its original Gaussian form.  Consequently, the betatron 

amplitude functions deviate from linear result of (3.8).  Electron beam geometric 

emittance also changes under such a nonlinear force.  We need to use simulations to 

determine the resulting deterioration.  

First, we can calculate how the emittance changes and the evolution of rms beam 

size.  The geometric emittance is expected to grow under nonlinear force.  

Simulation parameters are based on values in Table 1.2. The design electron �* is 1 

meter with beta waist position at IP.  Both beams are assumed as 6-D Gaussian beam 

with 4 sigma cut off.  So the proton coordinate range is from -0.8 meters to 0.8 

meters relative to the reference particle.  According to relation (3.3), the actual 

collision occurs from -0.4 meter to 0.4 meter relative to IP.  The evolution of rms 

beam size and emittance is shown in Figure 3.3.   

In Figure 3.3, the electron beam travels from positive longitudinal position to 

negative position.  We can see the electron beam emittance increases by factor of 2 

in the entire collision process.  Mainly the emittance change happens in range of 
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[-0.2m, 0.2m], which corresponds to collisions with proton beam of longitudinal 

position ±2�pz.  The beam size of the electron beam forms a ‘pinch’, which 

corresponds to the strong focusing by proton beam.  Details of pinch effect on proton 

beam will be discussed in chapter 5.   

 
Figure 3.3: Evolution of Beam Size and Emittance of Electron Beam 

Under nonlinear force, the proton beam distribution will be distorted from its 

original phase space shape, as seen in Figure 3.4.   In order to easily compare with 

design optics without beam-beam effect, we transferred all macro-particles 

coordinates after beam-beam interaction back to IP position.  Mathematically, the 

process is processed as: 
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with s=-0.4meter.  The coordinates with tildes represent the coordinate near IP.  

After getting the virtual distribution at IP, we can calculate the effective betatron 

amplitude function as:  
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Here, �x represents the rms geometric emittance obtained from beam distribution, 

written as: 

 � � � � � �� � 22 2
x x x x x x x x x� . . . .� � � � � �  (3.14) 

 

Figure 3.4: Phase space distribution of electron beam after collision for �*=1m, back 
traced to the IP. Mismatch between the geometric emittance and Courant-Snyder 
invariant ellipse of design lattice. 

Figure 3.4 shows the large mismatch between phase space distribution and the 
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design lattice.  For design lattice at IP, the alpha function vanishes and 

Courant-Snyder invariant ellipse is upright with the ratio of semi-axis is 1/�.  From 

(3.13), we can calculate the effective beta and alpha function at IP gives:  
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After the collision, the electron beam is decelerated in the process of energy 

recovery and travels through several recirculation passes. The final electron emittance 

after the collision is very important, since magnets of recirculation passes as well as 

components of the superconducting linac must have sufficiently large aperture to 

accommodate the disrupted electron beam and avoid beam losses.  For the purpose 

of evaluation of the acceptable magnet apertures it is reasonable to consider the final 

electron beam emittance defined not as the geometric emittance, but according to the 

emittance shape from the design lattice without collisions, diluting the real beam 

distribution in betatron phase to fill the emittance shape defined by the design lattice.  

Mathematically, the geometric emittance is defined in (3.14) and the effective 

emittance is defined as the half rms value of Courant-Snyder invariant of all 

macro-particles based on design lattice.  The betatron amplitude function invariant C 

is: 

 � � 2 2, 2C x x x xx x� * �. . .� � �� � � �� �  (3.16) 

In the above equation, the betatron amplitude function should be calculated at 

different longitudinal positions according to design optics.  For the example of 

�*=1m at IP, we can get the comparison of evolution of rms geometric emittance and 

effective emittance in Figure 3.5.  In the figure we can see that the rms emittance 

growth in effective emittance due to mismatch is much larger than growth in 

geometric emittance which is only related to the nonlinear beam-beam force.  Before 
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collision, the geometric emittance has exact same value as effective emittance because 

the beam distribution perfectly matches the optics.   After the collision, in this case, 

the final rms effective emittance is about 9 times larger than geometric rms emittance, 

18 times larger than original rms value.  However, the geometric rms emittance 

growth is an intrinsic growth due to the nonlinearity, while beam mismatch largely 

depends on the design optics.   

 
Figure 3.5: Comparison of rms geometric and effective emittance of electron beam in 
beam-beam interaction for �*=1m 

From the section 3.1, we know that the lattice mismatch is mainly a linear effect.  

It is expected that the mismatch can be reduced by properly choosing the betatron 

amplitude functions of the electron beam just as calculated in section 3.1.  Since 

small designed �* reduces mismatching from experience of linear force discussion, we 

can plot the rms emittance growth and rms beam size evolution in interaction region, 

for �*=0.2 meter. 
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Figure 3.6: Evolution of beam size and rms emittance of electron beam for �*=0.2m, 
both geometric and effective emittance. 

From Figure 3.6, we can observe two advantages over large design �*=1m.  

First the rms geometric emittance growth rate between initial emittance and its final 

value is low for low �*.  The emittance increase only about 4% compare with 100% 

in the case of �*=1m.  Second, the rms effective emittance after interaction has about 

25% increment, far less than the huge rms effective emittance of �*=1m.  This is 

clearly a benefit from small mismatch, which is proved in Figure 3.7.  And we can 

calculate the effective beta and alpha function from phase space distribution as: 
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Figure 3.7: Phase space distribution of electron beam after collision for �*=0.2m, back 
traced to IP. Mismatch between the geometric emittance and Courant-Snyder invariant 
ellipse of the design lattice 

Usually nonlinear forces not only cause rms emittance growth, but also form a 

longer tail and a dense core at center of the electron beam distribution.  The long tail 

beam distribution requires larger acceptance to prevent beam losses.  Before the 

beam-beam collision, the electron beam distribution is Gaussian with 4 sigma cut off.  

We can expect that all macro-particles are covered by phase space ellipse of 16 rms 

emittance.  However, after nonlinear beam-beam interaction, the long-tail will 

extend to at least 25 times the final rms emittance according to simulation results as 

shown in Table 3.1.   
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Table 3.1: Portion of particle be covered in certain emittance 

# of rms emittance 
Gaussian 

Distribution 

Distribution after 
Beam-Beam effect 

(�*=1m) 

Distribution after 
Beam-Beam effect 

(�*=0.2m) 

2 63.2% 69.5% 64.0% 

4 86.5% 90.9% 86.8% 

6 95.0% 95.5% 94.9% 

8 98.2% 96.9% 97.8% 

10 99.3% 97.6% 99% 

15 99.9% 98.6% 99.8% 

20 100% 99.1% 99.9% 

25 100% 99.4% 100% 

30 100% 99.6% 100% 

We can see that after beam-beam collision, the electron beam distribution 

deviates from initial Gaussian distribution.  The deformed distribution tends to have 

dense core in center and long tail compare with Gaussian distribution. 

Since we cannot allow much particle loss in the energy recovery path and Linac, 

it is important to consider 100% geometric and effective transverse electron emittance 

in addition to their rms values.  For Gaussian distribution electron beam, it is 

apparent that 100% emittance values have direct dependence on the tail cut-off 

convention.  Therefore, it is reasonable to study the 100% emittance as function of 

tail cut-off points.  
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Figure 3.8: 100% electron geometric and effective emittance as function of cut off 
points for Gaussian distribution, for both large (initial rms emittance = 5nm-rad; 
�*=0.2m) and small initial emittance (initial rms emittance = 1nm-rad; �*=1m) 

 Figure 3.8 shows that there is still large discrepancy between 100% geometric 

emittance and effective emittance for small initial emittance case (1nm-rad).  The 

discrepancy is getting smaller if initial electron emittance is set to a larger value 

(5nm-rad).  The advantage of a large initial electron emittance is still obvious; it 

yields higher beam quality after beam-beam collision.   

3.3. Luminosity Enhancement 

Under strong focusing beam-beam force, the electron beam size shrinks from the 

designed beam size around interaction point.  At specific points, the electron beam 

forms narrow ‘pinch’ as we already seen in Figure 3.3 and Figure 3.6 for different 
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initial conditions.  This is usually referred as the pinch effect.  Obviously, this effect 

will enhance the design luminosity from definition (1.1) by introducing smaller 

electron beam size in denominator of the integral.   

By linear approximation, where the electron beam rms emittance is constant, the 

transverse rms beam size of electron beam is proportional to square root of beta 

function �(s)1/2, which is w(s) in equation (3.8).  The enhanced luminosity can be 

expressed as: 
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Here, proton and electron parameters are distinguished by subscript p and e.  �pz is 

the proton rms bunch length and de is the electron disruption parameter defined in 

(3.5).  In the first two equations of (3.18), both pinch effect and hourglass effect are 

included for calculating luminosity.  If we set k2(s) to zero, the luminosity will be 

reduced due to hourglass effect of electron beam.  When proper k2(s) is included, we 

can obtain enhanced luminosity due to pinch effect by solving (3.18).  

Since the nonlinear portion of the beam-beam field is very strong for electron 

beam, linear theory won’t give useful information on the electron rms beam size.  

More accurate results must be achieved from simulation, which considers strong 

nonlinearity of the beam-beam interaction.  In the simulation code, we perform a 

numerical integral just as the first equation in (3.18) and get the luminosity 

enhancement. 
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Table 3.2: Luminosity of different initial electron beam parameters 

Initial electron beam parameters 
Luminosity [cm-2s-1] 

Emittance [nm-rad] �* [m] Waist position [m] 

1 1 0 3.7×1033 

1 1 1 2.8×1033 

4 0.25 0 3.3×1033 

5 0.2 0 3.0×1033 

10 0.1 0 2.3×1033 

From Table 3.2, we can see different luminosity for various initial electron beam 

parameter.  As the initial beta function at the waist position decreases, the luminosity 

decreases too because of the hourglass effect.  Also we can control the luminosity by 

adjusting the waist position.  

 
Figure 3.9: Electron and Proton rms beam size as function of longitudinal position 
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In Figure 3.9, we show the rms beam size change for each item in Table 3.2.  

This is the main reason that the luminosity deviate from its design value.  In this case, 

we assume that, although the electron beam is disrupted by beam-beam force, the 

transverse distribution is almost Gaussian distribution.  Because (3.18) and (1.1) are 

only valid for a transverse Gaussian distribution.  As we will reveal in chapter 5, for 

large emittance and small �*, even though there is disruption effect on electron beam, 

the Gaussian distribution is still a good approximation and the luminosity we get in 

this section has good accuracy. 

3.4. Transverse Beer-Can Distribution Electron Beam 

Discussions of all sections in this chapter are under assumption that the electron 

beam has transverse Gaussian distribution (with 4 sigma cut-off) before colliding with 

proton beam.  But this assumption is valid only when electron beam travels much 

longer than the order of corresponding damping time of specific transverse direction.   

As we know, when the electron beam is bent during acceleration, electron 

radiates energy by synchrotron radiation.  On one hand, the radiation causes 

transverse phase space damping and the damping process will not stop until the 

transverse phase space area is zero.  On the other hand, the synchrotron radiation is a 

quantum process.  The lost energy from electron beam is discrete and has random 

Poisson distribution, which cause excitation on electron beam.  Besides synchrotron 

radiation, the magnet alignment errors also contribute the electron beam excitation.  

As a result, the transverse phase space distribution will reach balance between the 

damping effect and quantum excitation.  The dynamics system can be express as a 

simple 1-D system with (x,p) as conjugate coordinates 
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x p p
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. .� � �  (3.19) 

where the prime represents the derivative with respective to time t.  The Hamiltonian 

is very simple: H=p2/2+U(x).  Now we can add damping and quantum excitation to 

the system as: 
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x p p Ap Dw t
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Here A corresponds to the damping effect and Dw(t) represents quantum excitation.  

D serves as the excitation amplitude and the random function w(t) is normalized white 

noise function which satisfies: 

 � � � � � � � �0,w t w t w t t t,. .� � �  (3.21) 

Let �(x,p) represent the distribution function, after simple steps we can get the 

time evolution of distribution function combined with(3.20): 
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This formula is referred as Fokker-Plank Equation.  The equilibrium solution gives: 
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The equilibrium distribution we get is Gaussian distribution in both conjugate 

coordinates.  The constant E0 equals D2/2A, which is the thermal energy.  The time 

that one system takes to reach equilibrium can be estimated by the order of its 
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damping time.  The damping time for electron machine is usually on the order of 

milliseconds.   

For the current ERL design, the electron beam travels 5 turns and reaches its 

maximum energy, 10GeV, before colliding with proton beam.  Each turn, the 

circumference is very close to the RHIC circumference 3833 meters.  Therefore, 

before collision, it takes 64 microseconds for electron to travel from the entrance of 

ERL to interaction region.  This interval is two orders of magnitude smaller than 

typical time that electron beam needs to reach equilibrium.   

The above discussion reveals that the transverse distribution of the electron beam 

may not be a Gaussian-like distribution before colliding with proton beam.  The real 

distribution should be half way between the initial electron distribution when electron 

beam just escapes from electron cathode and Gaussian distribution.  Usually, the 

Beer-Can distribution is used to model electron beams in electron source studies.  

We also need to study the electron beam property after collision if the electron 

transverse distribution before collision is the Beer-Can type. 

Suppose an electron beam with Beer-Can distribution with rms value of �, there 

is a hard edge (Figure 3.10) for the beam distribution boundary, which is 2�.  This 

shows main difference between Gaussian distribution and Beer-Can distribution.  

For Gaussian beam, it has much longer tail (even with 4� cut-off) than the Beer-Can 

beam.  If the proton beam size equals electron beam size, the tail of the electron 

beam will experience nonlinear force according to Figure 2.1.  So we are expecting 

benefit from the result of Beer-Can beam simulation because high portion of electron 

undergo linear beam-beam force from the electron beam.   
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Figure 3.10: Transverse picture of Beer-Can distribution (left) and Gaussian 
distribution (right) for round beam with same rms beam size �=3.1×10-5m. 

It is worthwhile to note that if we collide a proton beam with a transverse 

Gaussian distribution with Beer-Can distribution electron beam, the resulting 

luminosity will be different from (1.1) which is for transverse Gaussian-Gaussian 

distribution beam collisions. 

For transverse Beer-Can distribution electron beam colliding with proton beam, 

the luminosity needs to be calculated by integration as: 

 � � � �, ,p eL dxdy x y x y fh
 
� ((  (3.24) 

Here, � represents the beam transverse density function, and infinite short bunches are 

assumed.  Other variables have same meaning as (1.1).   If both densities are in 

Gaussian form, we simply rebuild (1.1).  Now we use the following expressions for 

Gaussian and Beer-Can distribution respectively.  
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We already take the fact into account that both beams are round.  The explicit 

luminosity expression gives: 
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If proton and electron beams are matched, i.e. both transverse rms beam size are 

the same, we can compare the luminosity of ‘Gaussian-BeerCan’ collision and 

‘Gaussian-Gaussian’ collision with same electron intensity. 

 2/ 1 0.865GB GGL L e�� � �  (3.27) 

Here subscript GB and GG represents ‘Gaussian-Beer-Can’ collision and 

‘Gaussian-Gaussian’ collision respectively.  This indicates that a Beer-Can 

distribution electron beam requires 15.6% more intensity to achieve the same 

luminosity as the value of electron beam with a Gaussian transverse distribution. 

First we perform same simulation as we did in section 3.2 for Gaussian electron 

beam.  With the original parameter values, �*=1m at IP and initial electron emittance 

1nm-rad, we get the beam size and emittance evolution graph (Figure 3.11) as before.  
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Figure 3.11: Evolution of beam size and rms emittance of electron beam for �*=1m 
and initial Beer-Can transverse distribution, both geometric and effective emittance. 

By comparing Figure 3.11 with Figure 3.3 and Figure 3.5, we can see that the 

rms geometric emittance growth is negligible for Bear-Can transverse distribution 

case compared with Gaussian distribution.  But if the mismatch effect is considered, 

the final effective rms emittance for Beer-Can distribution is very close to the value of 

Gaussian distribution according to Figure 3.5.   
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Figure 3.12: Evolution of beam size and rms emittance of electron beam for �*=0.2m 
and initial Beer-Can transverse distribution, both geometric and effective emittance. 

If we reduce �* and increase the initial electron beam rms emittance to (�*=0.2m, 

initial emittance = 5 nm-rad), the mismatch is expected to be suppressed as shown in 

Gaussian distribution case.  For Beer-Can distribution, it is also valid as indicated in 

Figure 3.12.  The final rms effective emittance is similar to Gaussian distribution 

case in Figure 3.6.  Although the geometric emittance does not has obvious growth, 

the final rms geometric emittance for small is still larger than �*=1m case. 

After simple comparison, the rms geometric emittance improvement is observed 

in transverse Beer-Can distribution results, as we expected.  But rms effective 

emittance (considering mismatch) does not show much difference because mismatch 

is a linear effect. 
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Figure 3.13: Phase space map after collision of initial Beer-Can distribution Electron 
beam, the figure corresponds to initial transverse rms emittance 1×10-9 m-rad and 
�*=1m; the bottom one corresponds to initial rms emittance 5×10-9 m-rad and 
�*=0.2m. 

The phase space map of Figure 3.13 indicates that the distribution still has much 

sharper edge than Gaussian distribution after beam-beam collision. And again, we can 

see smaller beam disruption and mismatch for large initial rms emittance.  Therefore, 

for initial Beer-Can distribution, the initial condition with large rms emittance and 

small waist beta function is preferred, which is same result as we saw for initial 
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Gaussian distribution case. 

 
Figure 3.14: 100% electron geometric and effective emittance as function of cut off 
points for Beer-Can distribution, for both large (initial rms emittance = 5nm-rad; 
�*=0.2m) and small initial emittance (initial rms emittance = 1nm-rad; �*=1m) 

Although Beer-Can distribution ideally has hard edge at boundary at twice 

transverse rms sizes, it is safe to study 100% emittance at different cut-off values to 

investigate tolerance near twice rms sizes.  Similar to the Gaussian distribution, a 

large initial electron rms emittance (5nm-rad) reduces mismatch effect and yields 

smaller final emittance.  For geometric emittance, the result for Beer-Can 

distribution is different from Gaussian distribution case.  The small initial rms 

emittance (1nm-rad) yields smaller final geometric emittance, because the nonlinear 

effect is not strong at the edge of Beer-Can distribution. 
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3.5. Electron Beam Optics Optimization 

From discussion in the section above, both final geometric emittance and 

effective emittance improve when electron design optics changes from �*=1 m to 

�*=0.2 m.  Unlike linear theory, it is impossible to predict a specific optics function 

to minimize the mismatch after beam-beam interaction and electron beam loss.  In 

simulation, the process of prediction is replaced by searching from variety of electron 

beam initial emittance and reasonable lattices. 

During the simulations the following parameters were varied: initial electron 

beam emittance just before entering interaction region, design electron beta-function 

waist (beta function minimum) and electron beta-function waist position. The initial 

emittance and waist beta function determine the rms electron beam size before 

collision.  The position of the waist of the electron beta-function presents an 

important parameter as well. Intuitively, having diverging electron beam (with alpha 

function negative) before entering collision region, should be helpful for the reduction 

of the pinch effect.  If we persist the beam size matching condition, which means 

two beam transverse rms size equal with each other, only two parameters of emittance, 

beta and alpha function are independent variables.   

Let us first ignore the beam size match condition.  Then all three parameters are 

free in simulation.  As the output of simulation, we can get the final luminosity, the 

rms emittance (both geometric and effective emittance) and the 100% emittance that 

cover all macro-particles.  The luminosity deviates from nominal value in the design 

table, because we gave up matching condition in addition to the electron beam 
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distortion which is due to pinch effect and hourglass effect.  It is worthwhile to note 

that a 100% emittance for a Gaussian beam is infinite.  But in the simulation, since 

our macro-particles distribution has 4-sigma cut-off initially, we can get a finite 100% 

emittance using large amount of macro-particles.   

Table 3.3: Test parameter table (design values is marked with #) 

Initial Electron Emittance  

(×10-9 m-rad) 
1#, 2, 3, 4, 5, 6, 7, 8 

Electron Beta Function at Waist (m) 0.1, 0.2, 0.4, 0.6, 0.8, 1#, 1.5, 2 

Electron Beta Function Waist 

Position from IP  (m) 
-0.5, -0.4, -0.3, -0.2, -0.1, -0.05, 0#, 0.1, 0.2 

For a reasonable comparison, we group all the output as function of final 

luminosity, because the luminosity is most important parameter in collider design.   

 
Figure 3.15: Electron rms geometric emittance after collision as function of 
luminosity 
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Figure 3.15 through Figure 3.17 illustrate simulation results for dependencies of 

various electron beam parameters related to beam loss (rms geometric emittance, rms 

effective emittance and the 100% effective emittance after collision based on the 

design lattice) on the luminosity. Different symbols correspond to different initial 

electron beam emittance.  Each set of points for an individual initial emittance 

includes the points corresponding to various beta functions and beta function waist 

positions from Table 3.3.   

 
Figure 3.16: Electron rms effective emittance after collision as function of luminosity, 
the legend shows different initial electron emittance with unit ×10-9 m-rad 
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Figure 3.17: Electron 100% effective emittance after collision as function of 
luminosity, the legend shows different initial electron emittance with unit ×10-9 m-rad 

Figure 3.15 shows rms geometric emittance after collision versus luminosity. A 

remarkable feature is that the final rms emittance only weakly depends on the initial 

electron emittance for the same final luminosity value at a specific luminosity.  If 

those weak dependence is observed carefully, the final rms geometric emittance 

moves in the same direction as the initial rms electron emittance changes its value.  

Since the dependence is weak, the ratio of emittance grow is much larger for low 

initial rms emittance than large ones.  At about 40% accuracy, the rms geometric 

emittance after collision is a linear function of resulting luminosity.  A conclusion 

can be made that if we can achieve higher luminosity, a lower final rms geometric 

emittance will be automatically obtained.  This statement is valid from Figure 3.15 

to Figure 3.17.    

The rms effective emittance of the electron beam after collision based on the 
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design lattice, on the contrary, depends on the initial emittance (as seen in Figure 

3.16).  For different initial electron emittance, it is also a linear function of resulting 

luminosity with different slope and intercept.  For one target luminosity, in order to 

achieve smaller final rms effective emittance, one need higher initial emittance.  This 

is the opposite relation compared with the result of rms geometric emittance. 

To prevent beam loss, we need to pay more attention to the 100% effective 

electron emittance after collision.  From Figure 3.17, the relation is very similar to 

the case of rms effective emittance.  For any given luminosity, large initial emittance 

is preferred for a small final 100% emittance and less beam loss after collision.  

When the initial emittance is larger than 4nm-rad, the improvement of reducing 100% 

effective emittance becomes negligible.   

Because a large emittance electron beam is hard to achieve from a linac, we can 

conclude from Figure 3.15 to Figure 3.17 that, for minimizing the final electron 

emittance and beam loss after the collision, an initial rms emittance of electron beam 

should be increase to 4 nm-rad or 5 nm-rad from the design value 1 nm-rad. 
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Figure 3.18: Luminosity and electron beam size dependence as function of waist 
position. 

For electron beam loss study, we can apply matching condition to simplify the 

discussion.  If we change the initial rms emittance of electron beam to 4 nm-rad or 5 

nm-rad, the �* at waist position should be 0.25m or 0.20m correspondingly.  And 

now the free parameter is the waist position.  Figure 3.18 shows the dependence of 

luminosity and electron beam size as function of waist position when the initial 

electron rms emittance is 5 nm-rad and �* is 0.2m.  We can get maximum luminosity 

when the waist position sits on IP.  At the same time, we yield minimum rms 

electron beam size.  Usually it is dangerous for proton beam as we will see in 

chapter 0.  By adjusting the waist position, we can sacrifice luminosity to gain larger 

electron rms beam size. 
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3.6. Beam Loss Estimation and Matching 

Based on discussion of electron beam disruption and mismatch with designed 

optics, we can calculate the electron beam loss downstream after beam-beam 

interaction for a given aperture of the energy recovery path [12].  The evaluation 

needs the following assumptions: 

� After collision, only linear optics is present.  Normalized beam 

emittance is conserved. 

� The average beta function at energy recovery pass is 50 meters 

� According to the optimization result, initial electron rms emittance is set 

to 0.2 nm-rad and �* is 0.2 meters.  

The electron beam will be decelerated after beam-beam interaction in the linac, 

which is exact reverse process as it being accelerated.  The lowest energy in energy 

recovery path is around 1.75GeV for the low energy setup and 2.4GeV for high 

energy setup.  Then the beam will be decelerated in main linac for the last time and 

the beam energy drops to 0.5GeV.  The beam geometric emittance increases as the 

beam energy decreases.  Because the normalized rms emittance for electron beam 


�� remains constant during decelerating.  The beam loss happens when some 

electrons with large amplitude exceeds the aperture of energy recovery pass or linac.  

Unquestionablely, for fixed top energy, the number of lost electron will increase 

as the energy decreases.  But the power loss needs to be calculated carefully.  The 

power loss gives: 
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The energy dependence of power loss gives: 
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which implies the power loss will also increase as electron beam is decelerated. 

Figure 3.19 shows the power loss after collision for initial electron beam energy 

10GeV case.  It confirms that initial Beer-Can distribution electron beam needs 

smaller aperture than Gaussian distribution beam.  As we revealed before, the real 

electron beam distribution should be in transition between Beer-Can to Gaussian 

distribution. We anticipate that the aperture value achieved from Beer-Can 

distribution is underestimated and the one from Gaussian is overestimated, the real 

aperture will reside between above two values.  Besides, when one electron beam 

with certain top energy (10GeV) is decelerated to lower energy, it needs larger 

aperture to avoid beam loss.   
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Figure 3.19: Power loss at given aperture and energy with initial Gaussian distribution 
and Beer-Can distribution, high energy setup. 

Till now, all discussion is for the 10GeV case, which is high energy setup for the 

eRHIC project.  The analysis for low energy (3GeV electron beam) follows same 

steps as high energy case.  According to Table 1.2, the beam-beam parameters for 

both high energy and low energy are close.  In order to avoid repetition, the 

procedure will be omitted, and power loss graph is given directly.  Figure 3.20 

indicates that the power loss for the low energy setup share similar features with the 

high energy case.   
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Figure 3.20: Power loss at given aperture and energy with initial Gaussian distribution 
and Beer-Can distribution, low energy setup. 

 
Figure 3.21: Comparison power loss at 0.5GeV, between different initial energy, 
10GeV and 3GeV electron beam 
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From the comparison in Figure 3.21, the low energy case needs a larger aperture 

for same power loss level because the low energy beam is less rigid and the nonlinear 

force is more important.  The difference in aperture between low and high energy is 

small.  For both energy cases, the estimated apertures are around 15mm when the 

beam energy drops to 0.5GeV. 

From the fact that final electron beam emittance after the collision is contributed 

from both nonlinear disruption and linear mismatch effect; one can manually 

compensate the mismatch to reduce the final emittance by changing the linear electron 

lattice.  The difficulty for matching scheme lays at the capability of fast response 

system and the power needed for adjusting the magnet strength.   

Nevertheless, we need to first investigate the advantage of the matching scheme.  

We assume the latter lattice for electron beam already matches with beta gamma 

function of electron beam distribution after collision according to (3.13).  Then we 

can compare the aperture at 0.5GeV for certain power loss level for both the high 

energy and the low energy setup of eRHIC.    

This is a dilemma to judge the advantage of matching scheme.  Figure 3.22 

illustrates that for both the high energy setup and the low energy setup, the matching 

scheme will decrease power loss only for the Beer-Can distribution.  For a Gaussian 

beam, the matching scheme, on the contrary, will increase the power loss level, 

because of the tail of the electron distribution.   The definite conclusion can be 

drawn is: if the electron distribution before collision does not have long tails as in 

Gaussian distribution, the matching scheme will reduce the required aperture by about 

20%, for given power loss level.  If this 20% aperture reduction is essential for 

magnet design of energy recovery pass, the matching scheme would be worth 

building.   
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Figure 3.22: Power loss at 0.5GeV with or without matching scheme, top is initial 
10GeV case and bottom is 3GeV case.  
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4. KINK�INSTABILITY�

Throughout the beam-beam collision, the proton beam experiences the field 

generated by the disrupted electron beam.  The information of head in the proton 

bunch will be passed to its tail via this interaction.  This scheme can lead to head-tail 

type instability, referred as ‘kink instability’.  Thus, beam stability conditions should 

be established to avoid proton beam loss. 

4.1. Cause and Threshold 

The periodic beam-beam interaction between proton and electron beams may 

excite strong head-tail type instability, referred as the kink instability, on the proton 

beam.  Previous works [13, 14] analytically considered the instability using the 

linear approximation for the beam-beam force. 

The physical scheme of the kink instability is that through the beam-beam effect, 

the imperfection of head part of proton beam will deform the electron beam, and the 

deformed electron beam will pass the imperfection of head part to the latter portion of 

proton beam.  In the whole process, the electron beam generates a transverse wake 

field for proton beam through beam-beam interaction.  The proton synchro-betatron 

motion under electron wake field may lead to instability if the wake field intensity 
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exceeds certain threshold. 

Usually the imperfection of dipole moments has the lowest threshold and needs 

to be paid most attention.  We can perform analytical treatment to search exact form 

of wake field induced by the electron beam.  In this section, we use subscript p for 

the proton beam and subscript e for the electron beam.  For the electron beam, only 

the beam center is of concern, so we only the include dipole motion of one 

longitudinal slice.  And we use z to represent the longitudinal position inside proton, 

and s as the longitudinal coordinate.  The derivatives are with respect to s.  The 

proton macro-particle and center of the electron beam motion are given as: 
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Here, K represents the one turn betatron motion, k(s) has the same form as in (3.2).   

In order to make further analytical progress, we have to assume the function k2(s) is 

constant in range [-L/2, L/2], and zero outside the range, i.e. we have approximation 

as: 

 � �2 1

e

k s
Lf

�  (4.2) 

Also we need to set the boundary condition that, before collision, the electron beam 

center has zero displacement and zero angular deviation, i.e. 

 � � � �/ 2 / 2 0e ex L x L.� �  (4.3) 

Then we take Laplace transformation to the second equation of (4.1) and can solve the 
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motion of electron beam centroid. 
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Then the proton slice centroid at z satisfies the equation 
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Then we can learn that the wake field behaves as a sinusoidal function in range [-L/2, 

L/2] and the wake field only depends on the distance between leading and trailing 

particles, if we assume the proton distribution is uniform in longitudinal direction.   

 � � � � � � � �, sinW s s W s s k s s H s s. . . .� � � � �  (4.6) 

If we don’t make the approximation in (4.2), but instead use the Gaussian 

longitudinal model described by (3.2), there will be no analytical solution for electron 

beam centroid.  However, it is easy to discover that the wake field does not only 

depend on the distance between two longitudinal coordinates but also on both 

coordinates explicitly. We can calculate the wake field by simulation from the 

definition of wake field: 
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 (4.7) 

Here Nb is number of proton in the slice with initial offset �xp at s’.  The kick for the 

proton beam at s (s<s’) could be achieved from simulation and so could the wake 

field.  
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Figure 4.1: Wake field that the proton beam exerts, with different initial offset position 
of proton beam. 

In Figure 4.1, we verify that the wake field shape depends on where the initial 

offset is and differs from sinusoidal function which comes out of the approximation in 

(4.2). 

The exact threshold is impossible to calculate by an analytical approach under 

the wake field described by Figure 4.1.  To get an estimation of threshold we need to 

carry out the following further simplification.  First we assume the wake field is 

constant for a trailing particle and zero for a leading particle.  Second a two-particle 

proton model is used so that we can use a matrix to describe the map.  Subscripts 1 

and 2 refer to two macro-particles respectively.  Each particle carries Np/2 charges.  

Particle 1 is leading particle in first half synchrotron period, and it becomes the 

trailing particle in the second half period.  The one turn map for two particles is 
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simple to write:   
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Here, the one tune phase advance �� includes the linear beam-beam tune shift, i.e. ��

&5�#+6)%�� � The betatron functions are at the position just after beam-beam 

interaction.  Here the phase difference between two particles is neglected.  The 

trailing particle feels wake field induced by electron beam, which can be express by 

the map:  
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We use a to represent the kink from wake field for trailing particle.  Approximately a 

is given as: 
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In above equation, r is the classical radius of proton or electron, depending on the 

subscripts.  After half synchrotron period, the previous leading particle 1 becomes 

the trailing particle.  The K matrix becomes: 

 2
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0 0 0 1
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K
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 (4.11) 
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The one turn matrixes including beam-beam wake field in each half synchrotron 

period (T1 and T2) are: 

 1 1 2 2;        T K M T K M� � � �  (4.12) 

If the synchrotron tune of the storage ring is �s, it takes Ns=1/�s turns to 

accomplish one synchrotron oscillation.  The total matrix in one synchrotron period 

gives: 
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Usually, the explicit matrix of T is hard to obtain.  But if both T1 and T2 are not 

degenerate, which means that nth order matrix has n distinguished eigenvalues; we can 

get matrix power of T1 and T2 easily from its Jordan form.  For any matrix T1 and T2, 

they can be treated by Jordan Decomposition and written as Jordan canonical form.  

Then equation (4.13) will be simplified as: 
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If T1 and T2 are not degenerate, J1 and J2 will be diagonal matrixes and the power of 

matrices becomes the power of each diagonal elements.  Then the total matrix T will 

be just multiplication of six matrixes. 

With no surprise, we will get matrix T in a complicated form.  As we know the 

synchrotron oscillation will be very slow, so Ns is much larger than 1.  We can 

greatly simplified T, if the following conditions hold: 

 1 and cots sN N -� �  (4.15) 
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The second condition holds because the tune of ring must avoid integer and half 

integer to avoid resonance from imperfection of dipole and quadrupole magnets.  

Then the term cot� won’t be a large number.  If taking the eRHIC parameters for 

instance, Ns =1/�s=232, we have the transverse tune must be away from integer or half 

integer by value at least 6.8×10-4.  Apparently this condition is always true.  The 

simplified T reads as: 
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Then the criteria of stable motion described by T are that no absolute values of 

eigenvalue exceed one and no eigenvalues are one.  After mathematical steps, we 

have: 

 82
4

s saN a� �
�

	 4 	  (4.17) 

After plugging in parameters of eRHIC, where proton beta function is 0.26m, 

and the synchrotron tune is 0.0043, we have the parameter a must less than 0.13.  

From the definition of parameter a in (4.10), the parameter a has value 2.1.  In other 

words, if other eRHIC parameters remain as in Table 1.2, the estimated threshold of 

proton intensity given by the approximation in this section is about 1.2×1010 per 

bunch, while design number is 2.0×1011 per bunch.  The design parameter is about 

16 times larger than the calculated threshold. 
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4.2. Kink Instability from Simulation Results 

The analytical approach in 4.1 cannot give a full picture on the Kink Instability.  

We need to use simulation code to investigate the threshold and instability modes 

when the system becomes unstable[12].  Two main factors that are missed in 

analytical study will be covered by simulation.   

First, the beam-beam force is nonlinear beyond one transverse rms size for both 

beams.  The wake field at large transverse amplitude is smaller or even of a different 

sign if compared with adaxial case.  Second, because longitudinal distribution of 

proton beam is a Gaussian beam, the actual transverse wake field in Figure 4.1 cannot 

be expressed in analytical formula.  Different wake field shapes will certainly affect 

instability threshold. 

In order to separate from the other effects, the electron rms size is assume to be 

not deteriorated by the proton beam, i.e. we only simulated dipole effects on both 

beams.  In simulation we only use one macro-particle for the electron beam.  The 

size of electron beam is properly calculated at different position according to 

hourglass effect.   By these settings we ignore the electron pinch effect.   

We use 105 proton macro-particles in simulation.  The calculation time is set to 

10000 turns, which is 0.13 seconds.  Usually it is long enough when the transverse 

instability is investigated.  In order to prevent additional tune spread, we set the 

chromaticity to zero in this section.   
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Figure 4.2: The proton rms emittance growth with different proton beam intensity. 

Figure 4.2 shows the proton rms emittance growth under nonlinear beam-beam 

force with zero chromaticity under different proton beam intensity.  Here the electron 

and proton parameters are according to Table 1.2 except proton beam intensity.  The 

nominal proton beam intensity is 2.0×1011 per bunch, which gives largest and fastest 

rms emittance growth.  The growth rate decreases as the proton intensity drops down.  

At very low intensity (<3.0×1010 protons per bunch), no emittance growth is observed 

with in calculation time.  After rising quickly, the emittance growth in the unstable 

high intensity cases is suppressed by nonlinear force.   
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Figure 4.3: The proton rms emittance growth with different electron beam intensity. 

Figure 4.3 shows the proton rms emittance growth under nonlinear beam-beam 

force with zero chromaticity for different electron intensities.   Other parameters are 

set to the same value as parameter table of Table 1.2.  For a very low electron beam 

intensity (0.7×1010 electrons per bunch), no emittance blowup happens within 

calculation time.  From the graph, we can see the higher electron beam intensity we 

use, the faster rise time we get.   However, large electron intensities generate larger 

nonlinear beam-beam field, which suppress the proton beam emittance to a lower 

level.  This explains the difference between Figure 4.3 and Figure 4.2.   
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Figure 4.4: The proton rms emittance growth with different proton rms bunch length. 

From the simple model of analytical approach in section 2.1, the threshold of 

transverse strong head-tail instability gives: 

 2 2

8
2

p e p e pz s

px ex p e

N N r r
a

� �
� � � � �

� 	  (4.18) 

For nominal design number �pz=0.2m, there is clearly fast instability with design 

value of other parameters.  We are anticipating that there will be a threshold for 

small rms bunch length �pz, as we already shown for electron and proton density.  

From Figure 4.4, the fast emittance growth disappears when the bunch length is 

shorter than 5cm. 

In order to compare this fairly to the threshold from matrix approach in previous 

section, we turn off the nonlinear effect and hourglass effect in the simulation code.  
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In addition, the synchrotron motion is replaced by matrix (2.23).  By this setting we 

only consider linearized beam-beam force and exclude the coupling between 

synchrotron and betatron motions due to hourglass effect. 

 
Figure 4.5: The proton rms emittance growth with different proton beam intensity 
with linearized beam-beam force and without hourglass effect. 

If we compare Figure 4.2 with Figure 4.5, in some proton intensity case such as 

0.3×1011 / bunch, the proton beam loses its stability in linearized beam-beam force 

and absence of hourglass effect case.  The tune spread caused by nonlinearity and 

hourglass effect actually increases the threshold of system.  In Figure 4.5, apparently, 

the threshold for proton intensity is between 0.1×1011 / bunch and 0.2×1011 / bunch. 

To investigate the threshold more accurately, we can perform Fast Fourier 

Transform on turn-by-turn proton beam centroid position.  For each proton intensity, 

the main peak and side peaks corresponds to the betatron tune and synchrotron side 
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bands because beam-beam force provides coupling between transverse and 

longitudinal motion.  Here we take horizontal motion for instance. 

 

Figure 4.6: FFT of proton beam horizontal centroid with different proton intensities. 

In this simulation the horizontal and longitudinal tune is chosen to be 0.685 and 

0.0043 respectively.  If proton intensity approaches zero, the main peak and side 

bands should be at: 

 sv n n�� �� 5 "�  (4.19) 

where n is the order of side bands, �� is the horizontal tune and �s is longitudinal tune.  

As proton intensity increases, some side bands move towards the main peak (zero 

order).  When two peaks merge, the beam will become unstable.  
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Figure 4.7: Proton beam centroid FFT peak as function of proton intensity.  The tune 
peaks have been normalized by (�-��)/�s. 

From Figure 4.7, the first order side band merges with main peak at an intensity 

of 1.6×1010 proton per bunch.  This means the threshold of proton intensity is 

1.6×1010 /bunch, which is very near to the analytical anticipation 1.2×1010 /bunch.   

When the beam in unstable, the mode can be investigated by taking a snapshot of 

the proton beam at IP.  On the turns when fast emittance growth is seen, the 0 and 1 

collective modes are well seen in the dipole moment pattern, as shown in Figure 4.8. 
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Figure 4.8: Snapshot of proton centroid position. 

4.3. Beam Stabilization and Slow Emittance Growth 

Since the eRHIC proposed proton intensity is above threshold, proper scheme is 

needed to cure the instability.  As we know, instabilities can be suppressed by tune 

spread, which is usually referred as Landau damping.  There are many sources to 

provide tune spread.  Nonlinear beam-beam force, hourglass effect and 

synchro-betatron motion are contributing to tune spread automatically.   Clearly, the 

tune spread helps in stabilizing the proton beam beyond threshold according to last 

section.  But at nominal design parameter, the beam is still suffering from instability. 

To increase tune spread, the easiest way is apply chromaticity in simulation, 

because the transverse tune for one particle is: 
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 / , / /x y x y x y�� � � ,� �  (4.20) 

So the rms tune spread of the beam is just the rms energy spread times chromaticity.  

Experimentally, the tune spread can also be enhanced by nonlinear magnets such as 

octopoles.   

From the eRHIC RF cavity data in Table 2.1, the rms energy spread for proton 

beam is 5×10-4.  We can apply different chromaticity to achieve various rms tune 

spread values.   

 
Figure 4.9: Proton rms emittance growth under different chromaticity. 
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Figure 4.10: Proton emittance growth with different chromaticity 

Figure 4.9 and Figure 4.10 indicates chromaticity value of 7-8, which provides 

rms tune spread 3.5-4.0×10-3, can suppress the instability with other parameters in 

their design values.  The chromaticity must be of the correct sign and have small 

amplitude; otherwise it will deteriorate the beam due to head-tail effect.  Under 

transition energy, the chromaticity must be small negative number and above 

transition a small positive chromaticity is need.  We can see a wrong sign 

chromaticity will deteriorate the beam worse, even though it can also provide same 

amount of tune spread. 

With low proton intensity, half of the design value 1×1011 per bunch, slightly 

smaller chromaticity is needed, as shown in Figure 4.11.  Here, a chromaticity value 

6 is sufficient to suppress the emittance growth. 
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Figure 4.11: Proton rms emittance growth under different chromaticity with low 
proton intensity (1×1011 per bunch) 

One may already notice that even the fast emittance oscillation is suppressed by 

proper chromaticity; there will be small proton emittance growth under this 

chromaticity.  A zoom-in figure of Figure 4.9 can show it clearly (Figure 4.12).   
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Figure 4.12 : Slow proton emittance growth at when chromaticity equals 7. 

We must seek the origin of this slow emittance growth, because the emittance 

increases by 7.5% in only 0.13 seconds, which yields a very poor lifetime.  This 

slow emittance growth is also reported from other head-tail type instability code [15].   

This emittance growth is believed to be, at least partly, contributed by numerical error, 

i.e. a fake phenomena generated only by the code.   We can examine this by 

increasing the number of macro-particles used in the code and fit the emittance 

growth with linear function.  If the emittance growth is caused by numerical error, 

the slope of rms emittance growth should decrease as number of proton 

macro-particle number increases. 
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Figure 4.13: Proton rms emittance growth slope as function of macro-particle number 

As indicated in Figure 4.13, the emittance growth slope drops if more 

macro-particles are used in simulation.  We can model the emittance slope K be 

function of macro-particle number as: 

 bK a
N

� �  (4.21) 

Here, N is the number of macro-particles, a and b are parameters to be determined.  

a is the intrinsic emittance growth slope and b is related to the slope due to numerical 

error.  The fitting result is: 

 
15 15

12 13

1.28 10 2.03 10 m-rad/turn
7.07 10 5.48 10 m-rad/turn

a
b

� �

� �

� � � 5 �

� � 5 �
 (4.22) 
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Although the result cannot give a definitive judgment that the slow proton rms 

emittance growth at presence of proper chromaticity totally comes from numerical 

noise, we have strong evidence that the actual emittance growth is much smaller than 

the slope shown in Figure 4.12.  More accurate estimation needs stronger 

computation resource. 
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5. PINCH�EFFECT�

The electron beam pinch effect is a very important effect in eRHIC e-p collision; 

because the enormous beam-beam parameter of electron beam will deform the 

electron distribution and shrink the rms beam size during collision.  The 

consequence of this on the electron beam such as possible beam loss was covered in 

Chapter 3.  In this chapter we are focused proton beam dynamics under electron 

beam pinch effect.   

5.1. Collision of Thin Proton Beam with Rigid Electron Beam 

Before considering the pinch effect of electron beam, we need to investigate the 

proton beam dynamics if the proton beam collides with ‘strong’ electron beams every 

turn.  ‘Strong’ means any beam-beam effects on electron beam are neglected.  In 

reality, this model is good for the fact that electron beam energy is extremely high or 

there is strong longitudinal magnetic field that make electron beam rigid.  However, 

in ERL based eRHIC case, electron beam is ‘weak’ compared with proton beam and a 

solenoid for such strong longitudinal magnetic field is impossible to make.  But the 

study of collision with rigid electron beam is still valuable for two reasons.  
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First, we can separate the hourglass effect, kink instability and pinch effect from 

nonlinear beam-beam force.  As we know, under nonlinear force, beam emittance 

will not be a constant.  Furthermore, combine with synchrotron motion, the collision 

point for different proton with different synchrotron amplitude will oscillate because 

of synchrotron oscillation and beam-beam parameter will also change due to 

hourglass effect.  Only simulation can assure proton emittance will not blow up 

under nonlinear force and synchro-betatron oscillation. 

Second, as we revealed in chapter 1, the proton beam will encounter the electron 

beam with a complicated transverse distribution.  We anticipated that the real 

electron transverse distribution before the collision should be in some stage of 

transition from a Beer-Can distribution to a Gaussian distribution.  For the Beer-Can 

distribution with transverse rms beam size �, the beam density inside 2� is constant 

and zero outside the boundary.  The beam-beam field calculated from Beer-Can 

distribution, as showed in Figure 5.1, is linear function as transverse coordinate with 

in 2� boundary and decreases inversely proportional to transverse coordinate. 
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Figure 5.1: The beam-beam field of Gaussian and Beer-Can distribution with same 
beam intensity. 

There is a hidden problem for the Beer-Can distribution in that, although the 

beam-beam field is a continuous function, its first order derivative has discontinuity at 

r=2�.  It means the proton beam at 2� will have sudden change in beam-beam tune 

shift.  The effect of this discontinuity on the proton beam also needs to be confirmed 

by simulation.   

In the following simulation, we ignore the proton bunch length so that only the 

nonlinearity of beam-beam force is included.  The working point is chosen to be 

(0.672, 0.678), similar to the current RHIC working point.   From Figure 5.2, we 

can clearly see that, due to the field first order derivative discontinuity of Beer-Can 

distribution, the proton beam transverse rms emittance grows remarkably in 1×106 

turns computation time.  For comparison, proton emittance doesn’t have observable 

increase during the computation time for transverse Gaussian distribution electron 

beam.  Here, the lifetime is only estimation; since numerical error mechanism also 
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introduces emittance growth. 

Table 5.1: Lifetime of Proton beam with different electron beam distribution 

Electron beam transverse distribution Time of proton emittance double 

Beer-Can 87 seconds 

Gaussian >200 hours 

 
Figure 5.2: Comparison of proton rms emittance with rigid Gaussian and Beer-Can 
electron transverse distribution 

Do the result in Figure 5.2 and Table 5.1 imply that transverse Beer-Can 

distribution electron beam must be forbidden?  This question may actually be moot.  

The Beer-Can distribution we just considered has a sharp edge at two transverse rms 

beam size.  But the sharp edge is not realistic in two following reason.  First, there 

is no absolute hard edge beam in reality even at the moment that electron beam just 

comes out of the cathode.  The edge must smoothly transfer from certain finite value 

to zero.  Second, when electron beam is accelerated in the Linac and transported 
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through 5 pass lattices, the transverse electron beam distribution smoothen further 

because of the synchrotron radiation and the magnet alignment errors.   

Therefore, it is worthwhile to model a ‘soft edge Beer-Can distribution’ to 

describe electron beam transverse distribution before collision.  By utilizing the 

model, there will be no tune shift discontinuity for proton beam at transverse edge of 

electron beam.  The model is written in the electron beam transverse density: 

 � � 2

2erfc
8

e ex

ex

N rr
edge

�

��

� ��
� � �

� �
 (5.1) 

Here we use complementary error function erfc() to model the soft edge.  When the 

edge approaches zero, �(r) represents the Bear-Can distribution with hard edge (as 

shown in Figure 5.3). 

 

Figure 5.3: Soft edge Beer-Can distribution with different edge 
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Figure 5.4: Beam-Beam Field calculated from Beer-Can transverse distribution with 
different edge size.  The right graph is the zoom-in graph of left one at edge. 

 

Figure 5.5: Proton emittance evolution under different size of edge in ‘soft’ Beer-Can 
distribution model. 

In Figure 5.4, we can see that the beam-beam field shows only tiny difference 

between different edges from 0 to 0.2�.  The only difference happens at the position 

around boundary of Beer-Can distribution which is twice the transverse rms beam size 

of electron beam. 
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It is expected that the proton emittance growth will be reduced by introducing 

‘soft edge’ transverse Beer-Can distribution of electron beam and Figure 5.5 confirms 

the expectation.  If edge is set to 0.2�, proton emittance growth is not observable in 1 

million turn’s computation time.  This can be quantitatively evaluated by calculating 

the time for proton beam transverse emittance becoming two times larger as shown in 

Table 5.2.  

Table 5.2: Lifetime of Proton beam with different edge size in Beer-Can distribution 

Electron beam transverse distribution Time for proton emittance double 

Beer-Can hard edge (edge=0) 87 seconds 

Beer-Can soft Edge (edge=0.05�) 151 seconds 

Beer-Can soft Edge (edge=0.1�) 385 seconds 

Beer-Can soft Edge (edge=0.2�) >200 hours 

From the previous discussion, it is obvious that a soft electron distribution gives 

longer life time to the proton beam.  At the edge value of 0.2�, the beam-beam field 

does not differ much from hard edge Beer-Can distributions and can be considered as 

a reasonable estimation.  However the real electron transverse distribution needs to 

be determined by tracking codes when lattice design is finished.  

5.2. Electron Pinch Effect and Beam-Beam Field Calculation 

In chapter 1, we learned that electron beam is focused by strong beam-beam 

force in interaction region.  As an immediate result, electron beam has very small 

rms beam size at certain position within interaction region, usually referred as ‘pinch 

effect’.  If one pays attention to the electron beam distribution after beam-beam 

collision, the distribution has a dense core as well as a long tail, which deforms the 
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beam-beam field exerted on proton beam. 

 
Figure 5.6: Electron pinch effect with different initial electron parameter 

Figure 5.6 shows that the proton beam pinches electron beam via beam-beam 

force.  The resulting electron beam envelope depends on the electron lattices design, 

according to the graph.  The ‘pinch effect’ causes several consequences which need 

to be discussed in detail.  The benefit from electron pinch effect is luminosity 

enhancement, as was covered in section 3.3.  Table 3.2 gives the actual luminosity 

enhancement from including pinch effect. 

In this section, the price for this luminosity enhancement will be assessed. The 

most obvious side effect is that the proton beam-beam parameter will increase as the 

rms electron beam size shrinks.  One can rewrite the beam-beam parameter 

definition as:  
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The parameter is inversely proportional to the square of rms size of electron beam, if 

the transverse electron beam distribution is Gaussian.  For example if the initial 

electron emittance is 1nm-rad with �*=1m at IP, the minimum rms electron beam size 

during collision is 8.7×10-6m located as s=-0.04m, comparing with the nominal design 

value 3.2×10-5m.  Therefore proton beam-beam parameter at this specific point 

reaches 0.19, which is 13 times larger than the design value 0.015 in Table 1.2.  If we 

take an average along the proton beam, the average proton beam-beam parameter 

during one collision is 0.067, more than four times larger than design value.  It is not 

efficient way to gain no more than 30% luminosity with the price of 4 times larger 

average proton beam-beam parameter and 13 times larger peak value at a specific 

point. 

There are two drawbacks from large beam-beam parameter induced by electron 

beam pinch effect. 

� Large beam-beam parameter will produce large tune spread so that one 

cannot find proper working point to avoid nonlinear resonance.  

Nonlinear diffusion will destroy beam quickly 

� Proton beam exerts different beam-beam parameter along the beam.  

Longitudinal oscillation will guide every proton in the bunch pass 

through the ‘pinch’ position which will induce synchro-betatron 

oscillation. 

The electron rms beam size evolution can be controlled by proper initial electron 

optics and emittance.  From Figure 5.6, the pinch effect is weakened by decreasing 

�* and increasing the initial electron rms emittance.  For initial emittance 5 nm-rad 
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and �* value of 0.2m case, the minimum beam-beam parameter for proton beam 

becomes 0.043 and average beam-beam parameter throughout interaction region is 

0.026.  

 
Figure 5.7: Average electron rms beam size as function of luminosity. 

Followed by the procedure in section 3.5, we can vary the initial electron beam 

parameter to investigate the resulting average electron rms beam size.  Again, we 

plot it as function of actual luminosity in Figure 5.7.  The figure indicates a surprise 

fact that no matter what the initial electron beam emittance and optics are, the average 

electron rms beam size during collision is nearly a linear function of the luminosity.  

In another words, if we can get the luminosity during collision, we will approximate 

know the average electron beam size, hence the average beam-beam parameter of 

proton beam. 

Besides the electron beam size shrinking, the distribution of the electron beam 
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also changes, and a simple model may be needed to study this.  The initial electron 

transverse coordinate is written by (x, x’) with Gaussian distribution: 

 � �
2 2 2

2, exp( )
x

x xf x x �
�

.�. 3 �  (5.2) 

Here f is the phase space distribution function, � is the beta function and �x is the rms 

beam size.  The beam-beam kick from opposite bunch which is also Gaussian 

distribution is simplified as: 
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 (5.3) 

The subscript n represents the new coordinate after kick.  fx is the focal length of 

beam-beam force.  The map in (5.3) is symplectic map of first order which conserves 

energy.  The old coordinate can be expressed as function of the new parameters as: 
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According to Liouville’s theorem, the distribution after collision gives: 

 � �
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Here we expand the exponential term at vicinity of zero.  The distribution of angular 

divergence x’ is no longer Gaussian.  As the beam propagates forward, the phase 

space distribution will deviate from initial bi-Gaussian form. 
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We can plot the histogram of the x coordinate after beam-beam collision from the 

result the simulation.  Figure 5.8 and Figure 5.9 show the histogram of electron 

coordinate and deviation from Gaussian distribution from initial electron rms 

emittance 1nm-rad and 5nm-rad respectively 

 
Figure 5.8: Electron position histogram after Beam-Beam collision.  Initial electron 
rms emittance is 1nm-rad and �* is 1m at IP.  Green curve corresponds to the 
Gaussian function fit based on electron beam rms size and histogram data. 

Figure 5.8 indicates that for small initial rms emittance and large waist beta 

function, the distribution has dense core and longer tail if compared with Gaussian 

distribution with same rms size.  The deviation from Gaussian should be smaller if 

beta function is smaller, according to (5.4).  This is confirmed by Figure 5.9. For 

5nm-rad initial rms emittance and 0.2m �*, the final electron distribution does not 

deform much from Gaussian distribution at all. 
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Figure 5.9: Electron position histogram after Beam-Beam collision.  Initial electron 
rms emittance is 5nm-rad and �* is 0.2m at IP.  Green curve corresponds to the 
Gaussian function fit based on electron beam rms size and histogram data. 

Since there is a possibility that electron transverse distribution will deviate from 

Gaussian distribution, it is not safe to use (2.3) to calculate the beam-beam field for 

each proton slices.  We can take advantage of the fact that both beams are round.  

According to symmetry, we can alternatively calculate the electric field from Gauss’s 

Law and the histogram of electron transverse position.  And the field simply write 

as: 

 
� �
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x e

y

E xeN r
E yr��
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 (5.5) 

Here Ne(r) is number of electron beam that transverse displacement from axis equals 

or less than r.   
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Figure 5.10: Beam-Beam field calculated by Gauss Law and from rms beam size 

We compare the beam-beam field calculated from the different methods based on 

the electron beam after collision in Figure 5.10.  The field calculated from beam 

histogram and Gauss’s law is more accurate.  And the field from (2.3) is based on the 

rms beam size with Gaussian distribution.  For large �* case (1m), there is huge 

difference between the two methods.  The beam-beam field near axis is much larger 

than that anticipated from (2.3).  If comparing the field slope near axis, the real field 

is about 2.5 times larger than the result from Gaussian beam formula.  On the 

contrary, the difference is tiny for low �* case (0.2m).  The results are consistent with 

histogram graph Figure 5.8 and Figure 5.9. 

Therefore, to calculate the beam-beam field generated by electron beam with 

large design beta function, the Gauss law (5.5) is required to achieve accurate effect 

on proton beam.  For small design beta function, the Gauss’s law method and 

equation (2.3) are expected to give similar results.   In the simulation of this chapter, 
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we will always calculate the beam-beam field exerted by proton beam from Gauss’s 

law method instead of equation (2.3) to increase accuracy. 

5.3. Proton Emittance Growth under Pinch Effect 

We have already shown that the electron beam pinch effect increases the 

beam-beam parameter for proton beam by two factors 

� Electron rms beam size shrinks due to focusing effect of proton beam. 

� Dense core formed in electron beam distributions. 

A large beam-beam parameter may induce emittance growth due to nonlinear 

resonance.  And the longitudinal position dependence of pinch effect can also 

deteriorate proton beam quality by synchro-betatron oscillation.   

In order to focus on the pinch effect and the proton beam-beam parameter 

enhancement, we manually disabled the dipole moment of the proton beam.  The 

dipole moment dynamics leads to head-tail type instability (kink instability), which is 

already discussed chapter 1.  The working point of proton beam is set to (0.674, 

0.675) to provide large tune spread space.  The chromaticity is zero because the no 

head-tail instability will be excited due to dipole moment offset.  The higher order 

offset will be suppressed by strong beam-beam force.  The number of 

macro-particles for electron beam and proton beam are 50K and 300K respectively. 
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Figure 5.11: Proton rms emittance comparison between different electron beam initial 
emittance. 

Figure 5.11 confirm the harm of large proton beam-beam parameter.  As we 

revealed before, small initial electron rms emittance (1nm-rad and �*=1m) yields 

unacceptable proton beam-beam parameter of 0.067, when electron distribution 

deformation is excluded.  In this case, the emittance growth becomes very fast 

(green curve).  On the contrary, the large initial electron rms emittance (5nm-rad and 

�*=0.2m) case does not show obvious emittance change.  However, the initial 

emittance 1nm-rad case also has larger luminosity than its opponent according to 

Table 3.2. 

A more fair comparison is to compare two cases with similar luminosity.  If the 

waist position of electron initial rms emittance 1nm-rad case shifts back from IP to s = 

1m, the luminosity will drop to 2.8×1033, less than the initial emittance 5nm-rad case.  

In this case the pinch effect is smaller because the electron beam is designed as 
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diverging beam before collision and focused by beam-beam force.  If the luminosity 

is small, the average electron beam size through collision is large and the proton 

beam-beam parameter will be small indicated by Figure 5.7.  But the emittance 

growth for this case (blue curve) is still very fast.  This confirms the importance of 

distribution deformation.  Although the average beam size is larger by moving the 

beta waist position, the �* is still as high as 1m.  Electron beam forms a dense core 

and deteriorates proton beam. 

 An important conclusion can be achieved from Figure 5.11.  In order to keep 

proton beam stable, we must choose large electron initial rms emittance and 

small beta waist position.  

 
Figure 5.12: Proton rms emittance growth at small waist beta functions at different 
waist positions. 
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Table 5.3: Lifetime of Proton beam with different initial electron beam parameter 

Initial electron beam parameters Luminosity 

[cm-2s-1] 

Time for proton 

emittance double Emittance 
[nm-rad] 

�* [m] 
Waist 

position [m] 

1 1 0 3.7×1033 0.25 seconds 

1 1 1 2.8×1033 0.26 seconds 

5 0.2 0 3.0×1033 150 seconds 

5 0.2 0.2 2.6×1033 200 seconds 

10 0.1 0 2.3×1033 400 seconds 

Similar improvement can be employed for large electron initial rms emittance 

(5nm-rad) case to reduce pinch effect.  If we shift the electron optics beta waist 

position backwards to s=0.2m, the luminosity will drop and the proton beam becomes 

more stable than the case of beta function at IP.  We can see that for the large 

emittance case, i.e. the electron beam distribution does not deviate much from 

Gaussian; it is a compromise between high luminosity and stable proton beam. 

The actual time for proton rms emittance increasing by factor of two will be 

longer than the values in Table 5.3.  The reason is also from numerical noise, similar 

to the discussion in chapter 1.  More accurate results are will need to utilize more 

macro-particles, both for electron beam and proton beam.  With the same treatment, 

we fit the emittance growth as linear function and model the slope as,  

 
m

bK a
N

� �  (5.6) 

The slope K contains intrinsic part a and statistical error part b divided by the proton 

macro-particle number Nm with fixed electron macro-particles of 50000.  The a and 

b are determined from different Nm values as: 
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It is not a surprise that the intrinsic emittance growth has a large error, due to the 

limitation of computation resources.  More precise results require larger amount of 

macro-particles.  Nevertheless, the emittance growth time for duplicating is already 

in same order as the anticipated cooling time of coherent electron cooling, which is 

about 15 minutes.  Therefore, the emittance growth is expected to be suppressed by 

cooling technique. 
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6. NOISE�

Noise is a unique issue in linac-ring collider and need to be considered carefully.  

In this chapter, different types of noise are analyzed separately and requirement of 

noise control is brought out.  

6.1. Noise of Electron Beam 

In linac-ring scheme, proton beam collides with fresh electron beam each turn.  

The imperfections of electron source, electron linac and transport path can cause 

variation from their design values. If the imperfection is changing from turn to turn 

randomly, the proton beam will exert beam-beam force with noise periodically.  It 

should be distinguished from the periodic imperfection, which has sharp frequency 

spectrum.  The noise may heat up proton beam and produce harmful results. 

Types of noise can be classified by their frequency spectrum.  If the noise 

contains all frequency, i.e. the power spectral density is constant, it has name of 

‘white noise’.  Usually white noise is good approximation in real world.  Here we 

assume all imperfections in electron beam that collides with proton beam each turn 

are white noise.  Mathematically, the autocorrelation of the imperfection is delta 

function, only has none zero value if evaluated at same time. 
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6.2. Noise of Electron Beam Intensity and Displacement 

The fluctuation of laser amplitude in the electron source and other facts may 

cause electron beam intensity fluctuations.  As a result, the beam-beam parameter of 

proton beam varies from turn to turn by a small amount.   

Let’s consider a thin proton bunch which collides with electron bunch exactly at 

IP[12].  For a single proton, we have: 

 � � � �2 1p fn
p p

p p

x
x K s x s nC

f f
,

,
� �

.. � � � � �� �� �
� �

 (6.1) 

The definitions of symbols above are same as in section 4.1.  �fn is the random focal 

length error at turn n raised from proton beam-beam parameter imperfection.  We 

can combine the normal beam-beam kick to left hand side of (6.1), as: 

 � � � �2
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f
,
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Now the new K(s) with tilde represent one turn revolution including regular 

beam-beam force.  Only error beam-beam kick left in right hand side of (6.2).  

Assuming the beam-beam force is small, if not at IP, the motion xp is approximately 

given as: 

 � � � � � �� �s cospx Aw s s6�  (6.3) 

A is the betatron motion amplitude and unchanged between two beam-beam kick, w(s) 

and �(s) satisfy the envelope equation: 
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Then between beam-beam collisions, the normalized particle motion Xp(s)=xp(s)/w(s) 

is just a sinusoidal motion with modulated phase �(s).  Then we have: 

 � � � � � � 22 2 2X s X s w s A.
 �� �� �  (6.5) 

Just after error beam-beam kick at IP, the equation still holds with different 

amplitude: 

 � � � � � �
� � � �

2

2 2 2 20
0 0 0

0
x

X s X s w s A A
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,

,� � �
�


 �� �.
� �� �.� � � � � � �
� �� ��� �� �

 (6.6) 

Subtracting (6.6) from (6.5) and tracking on ensemble average, gives: 

 � �� �22 0A w s x, ,� .� �  (6.7) 

If T represents the revolution period of the proton ring, from (6.3), the increase rate of 

average beam size at IP gives: 
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x f
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� , � ,

� ,

.
� �

�

 (6.8) 

The momentum change due to error beam-beam kick is easily get from (6.2).  It 

shows that the random error of linear field will cause beam size to grow exponentially.  

Then increase rate is inverse proportional to the error square, which reads,  
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The factor two difference between (6.9) and (6.8) is because we are evaluating rms 

beam size in latter equation instead of beam size square in earlier one. 

It is worthwhile to note that we are discussing a thin proton bunch passing 

through a linear thin lens with random error in focal length.  The emittance of the 

proton beam should be remaining constant.  This is not contradictory to the result of 

(6.9), which shows the rms beam size grows exponentially.  The key to solve the 

paradox is that the result of (6.9) is statistical average of large ensemble.  For one 

specific proton bunch, the rms beam size at IP will oscillate with increasing envelope.  

At the mean while, the rms beam transverse momentum also oscillates with an 

increasing envelope.  But there is � phase shift between two oscillations, which lead 

to a constant emittance at all times.   

If we plug in the design value of eRHIC, the rise time can be plotted as the 

relative error of electron beam intensity fluctuation (=7�f /f 8).  To get reasonable rise 

time (�10 hours), the electron beam intensity should be very stable, at order of 

1×10-4.  
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Figure 6.1: Transverse rms size rising time as function of electron intensity relative 
rms error 

A simple simulation can verify what we get so far.  To get quick effect, we set 

the error of electron intensity as 1×10-2 rms error.  According to (6.9), the resulting 

increase rate is 1.125 million turns, which is 14.4 seconds. 
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Figure 6.2: Proton rms beam size evolution under the presence of electron intensity 
noise and comparison with prediction of equation (6.9), each beam size data is the 
average of 1000 turns nearby. 

Figure 6.2 shows good agreement between simulation and theory.  The 

deviation between the simulation and the theoretical prediction is because the 

randomness of error each turn.  The ensemble average will give perfect agreement 

with theory.   
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Figure 6.3: Details of proton beam rms beam size and angular divergence without 
averaging under the presence of electron intensity noise . 

Figure 6.3 gives explanation on why the proton rms beam size grows 

exponentially under the noisy electron beam intensity while the rms beam emittance 

remain constant since the force is always linear.  Both proton rms beam size and rms 

angular divergence actually oscillate under the presence of noise.  Both oscillation 

amplitudes grow exponentially.  When beam size reaches maximum, the rms angular 

divergence reaches minimum and maintain the emittance constant and vice versa. 

Another imperfection can be the electron transverse position displacement at 

interaction region caused by orbit jitter.  If there is tiny transverse displacement 

when two beams collide, the proton beam will exert an extra kick, which is 

proportional to the value of displacement.   Consider the displacement is random 

from turn to turn; we can compare it with Brownian motion.  The proton beam size 

is expected to grow linearly as function of square root of time.  To prove our 
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expectation, we can perform similar steps as the beam intensity fluctuation.  

Equation (6.2) should be rewritten as: 

 � � � �2 n
p

p

dx K s x s nC
f

,.. � � � ��  (6.10) 

dn is the electron beam displacement at IP of turn n.  After same steps, the equation 

(6.8) has the form: 
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Explicitly, the proton rms beam size under random electron beam transverse 

displacement gives: 

 � � � �
2 *2

2 2
2 0

2
p

n p
p p

d t
x t x t

Tf
�

� � �  (6.12) 

Here, the expectation of rms beam size increasing is confirmed.  To make proton 

beam stable, we need the first term in right hand side of (6.12) is smaller than second 

term in cooling time (~1/4 hours).  We have: 

 

� �
� �

� �

2 *2
2

2

2 4 2

0.25
0

2

8.8 10 0

p

n p
p

n p

d hour
x t

Tf

d x t

�

�

	 �

	 � �

 (6.13) 

This requires that the transverse rms jitter at IP should be less than 2.8e-8m. 
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7. CONCLUSION�

ERL based eRHIC project is a promising design with revolutionary ideas which 

currently in its R&D stage.  As world first linac-ring collider, it takes full advantage 

of linac accelerator, which provide fresh electron bunch for each collision, to provide 

high luminosity electron-proton (1033 cm-2s-1) and electron-heavy ion (1032 cm-2s-1) 

collisions.   

There are some special features that arose from the linac-ring collision concept, 

that are trivial in traditional ring-ring collision.  The large beam-beam parameter and 

disruption factor induce electron beam distortion during beam-beam collision.  This 

distortion enlarges electron beam emittance and possibility of electron beam loss.  

For the proton beam, the beam-beam parameter increases when the proton beam 

interacts with the distorted/pinched electron beam.  The proton rms emittance may 

grow under large beam-beam parameter.   Besides distortion, the offset of foreside 

proton beam could be transferred to rear part of proton beam.  The beam-beam force 

can be regarded as wake field.  The present design parameters of eRHIC are beyond 

the stability threshold under this effective wake field.  The fresh electron beam for 

each collision will introduce noise to proton beam, which will heat up the proton can 

cause beam loss. 

Through analytical calculation and simulation, all special features above are 

studied carefully.  The electron disruption effect and distribution distortion can be 
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controlled by proper electron lattice and initial rms emittance.  A large initial rms 

emittance (5nm-rad) and small waist beta function (0.2m) can reduce the mismatch 

between electron distribution after collision and design lattice and the electron 

distortion due to nonlinear force.      

After the study above, we can suggest a new set of parameters and update the 

parameter table as shown in Table 7.1.  This set of electron beam parameters can 

bring benefits to both electron and proton beam. 

Table 7.1: Updated ERL based eRHIC parameter table 

 
High energy setup Low energy setup 

p e p e 

Energy (GeV) 250 10 50 3 

Number of bunches 166  166  

Bunch spacing (ns) 71 71 71 71 

Bunch intensity (�1011) 2 1.2 2.0 1.2 

Beam current (mA) 420 260 420 260 

95% normalized emittance 

���mm·mrad� 
6 575 6 575 

Rms emittance (nm), 3.8 5.0 19 16.5 

�* (cm), x/y 26 20 26 30 

Beam-beam parameters, x/y 0.015 0.46 0.015 0.46 

Rms bunch length (cm) 20 0.7 20 1.5 

Polarization, % 70 80 70 80 

Peak Luminosity, cm-2s-1 2.6�1033 0.53�1033 

 

Analytical approach and simulation also show that the kink instability induced 
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by beam-beam force has threshold which is more than ten times smaller than the 

present design parameter.  Proper tune spread is necessary to suppress fast proton 

emittance growth.  Simulation shows a chromaticity value 7 to 8 is optimum for rms 

energy spread 5×10-4.  The tune spread can also be achieved by nonlinear lattice 

elements such as octopoles. 

We also estimate the effect on proton beam due to turn by turn noise from fresh 

electron bunch.  Both dipole and quadrupole errors and their consequence are 

analyzed.   These criterions are brought out for certain proton lifetime. 

The contents are not only useful in linac-ring collider, but also can be utilized in 

other very important projects such as in general wake field study, ILC pinch effect 

calculation and general electron cloud studies.  
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Appendix�A.�Symplectic�Integrator� �

Suppose we have a dynamical system which is described by Hamiltonian, the 

symplectic integrator is developed to solve the equation of motion.  The drawback of 

differential equation solver such as Leap-Frog, 4th order Runge-Kutta method is that 

they do not conserve system energy, i.e. the Hamiltonian is not constant as function of 

the independent variable.    

For a dynamical system, its time independent Hamiltonian can be written as:  

 � � � � � �,H x p A p V x� �
� � � �  (A.1) 

The equation of motion gives: 

 dx H dp H
dt p dt x

) )
� � �

) )

� �
� �  (A.2) 

Here we use time t as the independent variable for universality.  In application to 

accelerators, the longitudinal position s is usually chosen as independent variable for 

convenience. 

The solution of equation motion has the form: 
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The parameters with subscript 0 represent initial conditions.  Alternatively, the 

solution can be express as a time dependent map of initial conditions: 

 � � 0

0

xx
M t

pp
� �� �

� � �� �
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�� �
��  (A.4) 

(A.3) or (A.4) are exact solutions of equation of motion (A.2).  If we perform 

any numerical solving methods, the result will be only on approximate solution up to 

certain accuracy.  If we can find the symplectic integrator map Mk, which satisfies: 

 � � � � � �1k
kM t M t O t �� �
� �

 (A.5) 

We will call Mk as symplectic integrator of order k.   

In order to find the symplectic integrator of order k, we perform canonical 

transformation by a proper generation function so that the new Hamiltonian vanishes 

up to the kth order of independent variable t.  And the map Mk can be derived from 

generation function of the third kind. 

For symplectic integrator of order k, we can divide the time interval �ti, the time 

step from coordinate (xi,pi) to (xi+1,pi+1), to k sub-steps.  For each sub-step we write 

the map as: 
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 (A.6) 



Symplectic Integrator  119 

 

For each time step i, the sub-step number j runs from 1 to order number k.  cj and dj 

are constant parameters that only depend on order k.  The usual order number can be 

1, 2 or 4. 

For k=1, the parameters give: 

 1

1

1
1

c
d
�
�

 (A.7) 

For second order symplectic integrator, the parameters have the values: 

 1 2

1 2

0 1
1/ 2 1/ 2

c c
d d
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 (A.8) 

Fourth order symplectic integrator has most popular usage, which has the 

parameter values: 

 1 2 3 4

1 2 3 4

0 2 1 4 1 2 1
0.5 0.5

c c x c x c x
d x d x d x d x

� � � � � � � �
� � � � � � � �

 (A.9) 

The parameter x has value of 0.1756.  It is worthwhile to note that the parameters are 

not unique and may have other set of values.    
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