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Abstract

Novel electron-hadron collider concepts are a long-term priority for the international nuclear physics
community. Effective beam cooling for intense, relativistic hadron beams will be necessary to obtain the
orders-of-magnitude higher luminosities being proposed. Coherent electron cooling (CEC) [1] combines
the best features of electron cooling and stochastic cooling, via free-electron laser technology [2], to
offer the possibility of cooling high-energy hadron beams much faster. Many technical difficulties must
be resolved via full-scale 3D simulations, before the CEC concept can be validated experimentally. The
parallel VORPAL framework [3] is the ideal code for simulating the modulator and kicker regions,
where the electron and hadron beams will co-propagate as in a conventional electron cooling section.
We present initial VORPAL simulations of the electron density wake driven by single ions in the
modulator section. Also, we present a plan for simulating the full modulator-amplifier-kicker dynamics,
by through use of a loosely-coupled code suite including VORPAL, an FEL code and a beam dynamics
code.
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Previous Work

* Electron cooling of relativistic ion beams is required for
high luminosities of electron-ion collider (EIC) concepts

— In the mid-term, RHIC luminosity could be increased ~10x

I. Ben-Zvi et al., “Status of the R&D towards elec-

tron cooling of RHIC,” Part. Accel. Conf. (2007). — Conventlonal nggler COUId replace
expensive solenoid
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(2008), submitted.
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Motivation for CEC concept : ORATO
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* Coherent Electron Cooling concept

— uses FEL to combine electron & stochastic cooling concepts
Litvinenko & Derbenev, “Free Electron Lasers and High-Energy Electron Cooling,” FEL’07 Proc.

— a CEC system has three major subsystems
« modulator: the ions imprint a “density bump” on e- distribution
« amplifier: FEL interaction amplifes density bump by orders of magnitude
« kicker: the amplified & phase-shifted e- charge distribution is used to
correct the velocity offset of the ions
— standard electron cooling could work well for RHIC II...

— but CEC could be orders of magnitude better:
 stronger interaction implies shorter cooling times
« effectiveness does not scale strongly with ion beam energy
— could even be relevant to the LHC
— modulator is now being simulated with VORPAL
Bell et al., “VORPAL simulations relevant to Coherent Electron Cooling,” EPAC Proc. (2008).
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Schematic of the CEC concept

Coherent electron cooling:

Litvinenko & Derbenev. Ultra-relativistic case (y>>1),

“FELs and High-Energy . . .
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Proc.
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Simulation Overview

* Using standard electrostatic PIC with VORPAL
— single, fully-ionized gold ion at rest
— 3D domain with constant density thermal electron
* bulk drift velocity corresponds to relative ion drift
* Computational noise must be suppressed
— each e- represented by ~100 macro-particles
— correlated e-/e+ pairs yield a perfectly quiet start
* We assume a semi-infinite e- beam
— boundary conditions are difficult
— Poisson solve Is periodic
— particles are destroyed at the boundaries
— thermal particle distribution is injected from edges
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Dimensionless & Dimensional parameters 1} H

Definition Description

* Infinite e- beam size ™
. . _ - Ratio of transverse to longitudinal
— only 4 dimensionless R REmale, RMS velocity spread

Ratio of transverse ion velocity to

p ara m ete rS T T=vy/oy, RMS velocity spread.
— finite beam size will 2o rewe, RS veloctyamend
b e S i m u | ate d i n th e € (=Z,,/ (41, R*\,) Plasma nonlinearity parameter.
£{=0.1 in the followi
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Parameter Value Definition
* VORPAL MKS
u S eS n, 1.60x 10 e-/m"3 ElectronDensity
Plasma frequency in

— use p arameters ®,= (2m)8.98n 12 7.14x 10° radians/second adinne pereeond
+ .
re I evant to Au 79 at £,=8.98 n, 1?2 1.14x 10° cycles/second Plasma frequency in

cycles per second
R H I C 11, 0.88 nanoseconds Plasma frequency time scale
_ . Nominallongitudinal
Ap=0,/o, 1.26 microns Debye radius
(6,..6,.,6,,) (27,27 ,9)x 103 m/sec RMS electron velocity spread

VE? VY U VEZ

ICFA-HB2008 Simulation of Coherent Electron Cooling Aug. 25, 2008 Slide #7



Effects of Boundary Conditions

* |sotropic, Gaussian e- velocities
— steady-state, linear theory predicts e- charge distrib.

— VORPAL simulations show reasonable agreement
« cannot use periodic BCs for the electrons
* time required to reach steady-state Is seen
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Effects of temperature anisotropy

Stationary ion
R = 3 (non-isotropic); T=0;Z=0

Z (along beam) vs. X (transverse)
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Effects of lon motion

lon moving transversely

R=3T=56:Z2=0
Z (along beam) vs. X (transverse) X (transverse) vs. Y (transverse)
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Comparison with theory

* Dynamical friction vs. details of e- density wake
— conventional electron cooling
« key metric is dynamical friction force on ions
* interaction time small compared to plasma period
— Coherent Electron Cooling (CEC); modulator & kicker
« dynamical friction is irrelevant
« key metric is size/shape of e- density wake
« very little theory available until recently
°* New analytical results for e- density wake
— Wang & Blaskiewicz, Phys. Rev. E (2008), in press.
— many details for “kappa” or Lorentzian velocity distrib.
« “kappa=1" distribution now implemented in VORPAL
« for slow ions, results are very similar for Gaussian
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Shielding charge within 4 Ay of the ion

* Analysis of W&B provides more detall
— anisotropic e- temperatures
— time dependence

* VORPAL simulations do not agree closely
—_— BCS are SuspeCt, | ITotaushie:dmgchargl;emtheci::;maimnarlsustime (Teta=0.02)l
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Theory & numerics differ at early times

* W&B assume infinite domain
— this e- reservoir moves inward at early times
— VORPAL assumes external fields are zero

Density delta (zeta = 0.020 ;R =3.0;, T=0.0,; L = 0.0) Density delta (zeta = 0.020 ;R =3.0; T= 0.0, L = 0.0)
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Theory & numerics agree at later times 1} H

* after t~1/o,,, BCs become less important

— sufficiently close to ion, dynamics remains nonlinear
* possibly exaggerated by cell size in simulations

Density delta (zeta = 0.020 ;R =3.0;T=00;L = 0.0) Density delta (zeta = 0.020 ;R =3.0; T =0.0; L = 0.0)

electron density perturbation
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Future work

* Modulator / Amplifier / Kicker

— simulate modulator with VORPAL
* 1D integrals of e- wake provide input to FEL theory
« particle files converted for input to other codes

— simulate FEL amplifier with GENESIS

— simulate particle transport with MaryLie/IMPACT
» phase shift of ions wrt electrons is critical

— simulate kicker with VORPAL
* Modulator simulations

— consider effects of finite e- beam size
« wakes will be asymmetric

— consider effects of multiple ions
« dynamics is nonlinear in immediate vicinity of ion
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