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REQUIREMENTS

DESIGN IMPLICATIONS

* No ring interference

* | arge well known polarization
* Rapid reversal
» Highest target thickness

* Detect low energy elastic
recoils

* Well defined edge

* Avoid Bunch field resonances

60mm free aperture

All UHV construction

Gas target

6-pole ABS with Breit Rabl
style polarimeter

Two hyperfine states ?

Strong guide field >1 kG

-

’gmgesign (W.Meng)
I possible

b

1 Collimator near RHIC beam,

High pumping speed target
chamber

High field uniformity - 103



RAY TRACING CODES
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IMPORTANT CODE ASSUMPTIONS

* START GEOMETRY

R nozzle = 1.0mm

(X1,Y1) (X2,Y2)

RANDOM POSITIONS ON NOZZLE AND COLLIMATOR DISCS



e START VELOCITY DISTRIBUTIONS
from B. Lorentz diplomarbeit [1]

—m (V—V ' )2
| 2 | 2k, T arift
f(V) = pZe b+ beam

Eyeam — g (Q > ];wzzle)
Varify = h(Q, Lozzte)



* MAGNETIC FIELD
Halbach formulas [2] for 24 sector 6-poles

Use Br = 1.29 T (available Ne-Fe-B)
Assume sudden turn on
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field for 6-pole magnet

Ideal and measured

« MAGNET CAN --assume 0.3mm wall

* DEGREE OF DISSOCIATION
We assumed 0i=0,(Q) * 0 (Tnozzle)
We used N. Koch's Tnozzle dependence [ 3]

Wisconsin Q dependence [4]



beam intensity (1019 pe s1sr)
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* BEAM ATTENUATION

A=A(Q,Tnozzle)

Used Wisconsin data[4] measured on H, with

aluminum dummy magnets.
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COMBINED FACTOR IS PLOTTED BELOW

yZes

—

atten*alphaQ-alphaT*Q

1.4

Quin atten*alphaQ*alphaT*Q |

1.2
1.0
0.8
0.6
0.4

Q (mbar Li/s)

A(Q,T) * &(Q) * o(T)* Q



GAS SCATTERING CHECK

Is scattering data still valid for new magnet geometry?

Pa, Qa Pb, Qb Pc, Qc

> AOPT

P1, Q1 P2, Q2 P3, Q3 P4, Q4

Generate Q's from ray tracing code (4 H states + H2)

Calculate gas conductance of elements from geometry
‘Combine conductances using
Resistor values proportional to 1/Cgas
Calculate integral of pressure * length

Gap #1 % Gap #2 Gap #3

Mag. #1 Mag. #4

i

Result:
deI(rhic ABS) = 'O.QJPdI (wisc ABS) at same flow Q.



PREDICTION OF ABSOLUTE BEAM INTENSITY

ONE STATE INTENSITY:

Q is flow in mbar-liter/s
Ny is Avagadros number

Latoms/s = IQ( Na )( Q) 2:2:AQ,T)-a(Q,T) Q. T,G)

/4 22.4-1013 /4 //v
one H hyperfine code transmission
state degree of dissociation

gas attenuation

convert units

solid angle correction
cos(0) increase over flat
two atoms/molecule }

%ﬁ//%

T

SOLID ANGLE OF MAGNET COS(0) INCREASE OVER
FLAT DISTRIBUTION

(polar coordinates)




COMPARING SYSTEMS

We want to maxirnﬁ_i_;g_" ' 84 seen by
RHIC beam inside 9mm spot size

e Weight each transmitted atom by 1/v
e Computation trick--weight each atom by 1/r

- -- allows all transmitted atoms to be included --
e Maximize target thickness by maximizing sum:

THICKNESS o< ) 1/rv

atoms

for O<r<rmax
fmax = 4.5mm

2nrdr

probability o< 1/r




MAGNET OPTIMIZATION

General problem has 16 geometry parameters + Q and Thozzle

Past experience gives some guidance:
Need pumping gaps , taper and two groups separated by drift
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S1, S2 S3 S4 gap S5 S6
L1, L2 L3 L4 L5 L6
D1 ~ D5

Helpful simplifications:

e small gaps fixed at 10mm
e diverging/converging system
e continuity of magnet bores

e target position and diameter FIXED
(10mm dia. 316mm after magnets)

But problem is nearly overwhelming  5'7=7 x10'!
- Gradient search not workable. We documented
numerous local maxima

/0
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PROBLEM APPROACHED FROM TWO DIRECTIONS

a) P.Quinid

» Use gradient search on one or two parameters of first element
* Move on to next element

e Fine tune total system

Example: search on D1, S1 at constant L1.

RESULT:
— MAGNETS FOLLOW BEAM ENVELOPE -- slope decreases

— MAGNETS ARE MASSIVE --difficult to build and expensive
— LONG GAP BEFORE CONVERGING ELEMENTS (650mm)

— HIGH PREDICTED OUTPUT 1X1O“27 atoms/s into 9mm disc.

Erj'_j PQDEC 0
o | 0 NOV ]

N/



b) H. Kolster method

Problem reduced to 9 geometry, Q and Tnozzle

L1 L2 GAP L3 L4
Si S4
o1 0
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Only systems making thickness cut are shown

Correlations are helpful but h_ot sufficient to optimize a design.
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e Ran code for >week and collected # ] systems,

» Studied best ones
* Predicted beams exceeded P. Quin/T. Wise design by 5%

e Magnets were even more masswe

e Streamline code to 20X faster and run >10,000

systems each "trial".
* Examine best systems’ and further restrict parameter space

e Expand to full problem
* Do not calculate if MAGNET MASS exceeds specific value

example: Ry rance Started with huge range of 2mm --10mm

Then restricted to 4.5mm< R,jirance <6-0mm
Eventually FIXED at 5.2mm while other parameters
were still varying.

Similar for Tnozzle

/Y
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Typical 50,000 system histogram
" Hand sorted through top 20
Some of the top 20 systems gave 93% of Quin/Wise
"hand grown" design but with 1/2 the mass.
Picked one and further optimized with
gradient search feature.

Only gained an additional 1% over random generated
system.
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ATOMS/S x 10M6

VERIFY CODE ACCURACY

D beam for

two n systems
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Jet polarization requires

GROUND STATE H ATOM ENERGY LEVELS

1-3 or 2-4 rf transitions 6 :
4 2
Polarimetry method similar to N
HERMES- |
e Use additional rf transitions ™"
and 6-pole magnets. 2
e Completely reject state 3 &4 1 N
atoms. 0 2 4 6 & 10
e Measure beam intensity for x=B/Bc

various combinations of rf transitions.

* Solve system of simultaneous equations for the unknowns:
1-3 efficiency, 2-4 efficiency, N;/N,

R
H
WF1-3 SF24 Vi WFis SFz4  ON-AXIS

C BEAM BLOCKER _—

% D)) el em,

. ' % ! A

N S0 2 () -
AE beam compression
:;I 6-pole magnet chopper tube
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Some examples:

ABS ABS BRP BRP Polarization
WF 1-3 SF2-4 WF'1-3 SF' 24

ff off off off
off off off
off off

off . off off

.. etc.

] Io /Il I .
N1 —/
N
time ——
)
AN




Measurement of BRP intensities

I, =1.5x10'6
Huge compared to HERMES flux
More than entire output of old ANAC sources from ~1980

Use chopper and compression tube.
Chop at 2 Hz

Test bench gives I; to 2% in 30 seconds



* Predicted Jet density is:
p=7x10""/em?® & py, = 1.3x10°° mbar H, equivalent

o Carefully measure "BREST GAS" including large z components.

a)Nozzle: Ray tracing predicts only 0.3% H2'
b) ABS pumping chambers: not fully understood
Cosy saw “dilution

c)H,0 beam is small but dilutes with enhanced factor

.= 183/2

We need to measure Mass 1, 2, &18 densities at IP

H, DILUTION WILL PROBABLY BE THE LARGEST
SOURCE OF POLARIIZATION ERHOR 0
-

22,



SYSTEMATIC ERROR FROM
N1/N2 = 1

RAY TRACING CODE PREDICTS:

AT JET-RHIC I P AT BRP DETECTOR

N1=1.004 N1=1.020
N2= 1.000 N2= 1.000
N3=1X10-4 N3=0
N4=8X10-4 N4=0

DOES THIS MATTER? No.
Error depends on:
RF transition efficiency
Target guide field

N;/No
For reasonable values of g;=.03, x=.01, a=0.9
ERROR IN AP = -.001

ERRORIN <P> = 3x1074

erTorAP = X[81_3 —a&y_yta— 1]

X
error < P >= EY [81_3 + 382_4]

_MNM-N

X



CONCLUSION

JET DESIGNED WITH

e 9x10'8ATOMS/S INTO 9mm APERTURE, 316mm FROM

LAST FOCUSSING ELEMENT

e JET THICKNESS 6x10'1/cm?

» CODE AGREEMENT WITH EXISTING SOURCES
IS ADEQUATE

» JET POLARIZATION PREDICTED TO BE NEAR 90%
AND RAPIDLY REVERSABLE

» WE EXPECT 3-4% ERROR AT FIRST EVENTUALLY
DROPPING TO BELOW 2% AFTER A YEAR
OF RUNNING
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