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Introduction

We plan to implement “Halo Cooling” to counteract IBS driven debunching.
Improve integrated luminosity by a significant factor within the next few years.

Debunching reduces useful luminosity by lengthening vertex.
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Bunched-beam Stochastic Cooling

« What would be required,
—Cooling time would have to be commensurate with de-bunching time,
~ few hours
—Cool only large AP particles (halo cooling)

» Consider coasting beam theory (full bucket)
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«  Why wasn’t stochastic cooling in the base line design for RHIC?

« High frequency bunched-beam stochastic cooling is required
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Highlights from last year
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Coherent Line Problem with Gold

4 MV on storage, 0.3 MV on accelerating

: ! : J ; ;mlr\nli.il —_—
mintmium energy culoff ——

L 4
| L 1 1 1 1
-3 -2 - 0 1 2 3

acceleration phase (radians)
4 MV on storage, 0.3 MV on accelerating
with cutoff —
density

=

g -

8 -

7 L

6 -

E

4

3 -

2 -

1 +

0

2
15
-2

0
-05 energy offset

Mike Blaskiewicz C-AD

4 MV on storage, 0.3 MV on accelerating

thermal

density

coooooooo
o= MRNw O O~00O—

0.5
acceleration phase (radians)

4 MV on storage, 0.3 MV on accelerating

1 —r T T T T
thaermal
thermal with cutoff

1

-3 -2 -1 o 1 2
acceleration phase (radians)

NATIONAL LABORATORY

5




Coherent Line Problem with Protons

Long lived coherent oscillations produce strong, narrow band spectra.
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Hid, p,s)= ;}jﬁ + 1 —cosgh + £p(a, 5). (4)
If we take a simple diffusion model, the rate at

p =2Jcos(V¥ + s), ¢ = 2Jsin(¥ + 5).  which a soliton dissipates will scale as vy /a*. with a
223 ljeing aty pi%.-n I_ {_|iI:I“IL,‘I“|.*-it‘III“I ql' the .hﬂlilt‘tl'l, With this cxll_‘u
———=G,(rn)/? —G,(r) = =077rIn(r)/(1 + 1), factor, the dissipation rate for solitons in a gold bunch is
¢ (32) about 50 times faster than the dissipation rate for a

comparable soliton in a proton bunch.
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Voltage considerations

For 4-8 GHz need 3.6 kV rms, large by stochastic cooling standards
Bandwidth-Voltage product sets the cost scale

Bunches are 7, =5 ns long spaced by at least T, = 100 ns
The value of the kicker voltage matters only when the bunch is present

V(t)=) A sin(2mt/z,+6,) A, and 6, vary smoothly
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Voltage and Power part 2

Take 21 cavities, 4-8 GHz bandwidth 40 Watts/cavity (10 K each)
R/Q=1002 10 MHz FWHP bandwidth, R > 40 kilo-Ohm

gives 1 to 1.4 KV rms per cavity, or 5.6 kV total

Cavity drive signal needs to be roughly sinusoidal for R (not R/Q) to matter
Suppose So(t) IS the drive signal for a broad band kicker (like a resistor).

Periodically extend N
Y S(t)=Y"S,(t—kz,)
k=0

This creates a signal with 10 MHz (1/T,)wide peaks,
spaced by 200 MHz (1/7;).

Split and pass through 100 MHz filters, centered on cavity resonance, before
power amps. In this way each amplifier sees a piecewise sinusoidal input.

Plan to use fiber optic technology for the delay line filter.
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Low Level Drive for Halo Cooling

For cooling we need a force in reverse to the energy error.

For 4-8 GHz we can use filter cooling

S(t) — G(l_e_ja)Trev)n Ibeja)(t_Td)

For n=2 we cool the full halo.
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Schottky before filter
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Error Limit Simulations

Took conservative errors.
e 2 pstiming error
o 20% amplitude errors

« 2 MHz cavity frequency
errors

Desired cooling voltage is
modeled as band limited
noise.

System is well behaved with
these errors.
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Plan for this run

 Installing 7-8 GHz and 4-5 GHz kickers in yellow 4 o’clock

« Build 16 channel delay line and full turn delays.

« Have 5 amplifiers so far

« For full comparison with Au beams need 1.€9 ions in a witness bunch

* We should get a clean cooling signal albeit at about %2 the expected rate
for the full system.

* Required voltage/cavity very similar to that needed for Au.

« All this assumes rebucketed beam. An experiment without rebucketed
beam would be worthwhile.
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Future Plans and Ideas

 Install full 4-8 GHz systems in both rings Mk
 Study interaction with electron cooling -
« Consider a wider bandwidth. —

_ .

— Cut a chord
— Use a transverse pickup (dispersion).
— New kicker technology needed.

e Transverse Cooling

b1=2, b2=4, sj(x) = 4*x/(bj*bj-x*x)

Mike Blaskiewicz C-AD NATIONAL LABORATORY 13



