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We use the ponderomotive potential of the rf field to accurately describe the motion of ions in an rf gun.

We apply the method to the BNL 1=2-cell superconducting radio-frequency photogun and demonstrate

that a significant portion of ions produced in the gun can reach the cathode if no special precautions are

taken. Also, we propose simple mitigation techniques that can reduce the rate of ion bombardment.
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I. INTRODUCTION

eRHIC is a future electron-ion collider designed at
Brookhaven National Laboratory (BNL) [1]. The current
eRHIC design is based on a superconducting energy re-
covering linac (ERL). To achieve a projected luminosity of
1033 cm�2 sec�1, eRHIC requires a polarized electron
beam with a current of 50 to 250 mA and a bunch charge
of 5 to 20 nC. A superconducting radio-frequency (SRF)
photogun with a negative electron affinity GaAs cathode
can be a viable option for the eRHIC electron source. An
SRF gun has several significant advantages when com-
pared to a normal-conducting rf gun. First, applying super-
conductivity solves the problem of power losses without
sacrificing the accelerating gradient. Second, SRF technol-
ogy naturally provides the ultrahigh vacuum environment
required for the prolonged lifetime of the photocathode. An
effort to explore feasibility of using a GaAs cathode in an
SRF gun has been undertaken at BNL [2]. Details of earlier
experiments with normal-conducting guns can be found in
[3,4].

GaAs cathodes are used extensively in static voltage
(DC) photoinjectors, polarized and nonpolarized.
Operational experience with DC guns has demonstrated
that ion backbombardment is the major cause of degrada-
tion of the quantum efficiency (QE) of GaAs cathodes.
Numerical simulations described in publications [4,5] re-
vealed that ion backbombardment also can occur in rf
guns, possibly limiting the lifetime of cathodes. Although
numerical simulations are useful for a specific gun, they
are hard to extrapolate to other guns if the scaling laws are
not known.

In this paper, we apply the method of a rapidly oscillat-
ing field to analyze motion of ions in an rf gun. Kapitza
originally proposed this method in 1951 [6,7] to treat
motion of a pendulum with a periodically moving suspen-
sion point. He based his analysis on calculating the time
average of a force over a period of fast oscillations. Boot
and Harvie [8] and Gaponov and Miller [9] applied the
same approach to charged particles in oscillating electro-

magnetic fields. We briefly describe the method in Sec. II,
emphasizing the importance of initial conditions in
Sec. II B. In Sec. III, we examine the ion motion in the
BNL 1=2-cell SRF gun and, in Sec. IV, discuss possible
mitigation techniques. We treat the motion of ions in the
presence of an external magnetic field in Appendix D.
We would like to note that electron backbombardment

and multipacting also can affect the cathode lifetime in an
rf gun. However, we do not discuss this phenomenon
herein.

II. MOTION OF IONS IN A RAPIDLY
OSCILLATING RF FIELD

A. Effective potential energy of an ion in an rf field

An accurate analytical solution of the equation of ion
motion in an rf gun is impossible in the general case.
However, this equation can be solved iteratively using
the method of a rapidly oscillating field. Accordingly, the
radius vector of an ion can be expressed as a sum of a fast
oscillating term, a, and a term describing the ion motion

averaged over the fast oscillations, xðtÞ ¼ rðtÞ: r ¼ xþ a.
If the rf electric field has the following form, E ¼ EðrÞ�
cosð!tþ c Þ, the fast oscillating term is given by

a ¼ ��2 qE cosð!tþ c Þ
mc2

(1)

and the equation for the averaged motion is given by

€x ¼ ��2c2

4

�
q

mc2

�
2rE2; (2)

where m and q are the mass and charge of the ion, respec-
tively, c is the speed of light, and � is the rf wavelength
divided by 2�. The method is applicable provided that the
amplitude of the fast oscillations is small compared to the
characteristic size of the inhomogeneity of the rf field, L:
jaj=L � 1.
Equation (2) shows that the effect of the rf field averaged

over the fast oscillations can be described by the effective
potential energy,*pozdeyev@bnl.gov
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2
; (3)

where Z and A are the ion charge and mass states, respec-
tively, e is the elementary charge, and muc

2 is the energy
equivalent of the atomic mass unit, 931.5 MeV. The po-
tential energy (3) frequently is referred to as the ‘‘pondero-
motive’’ potential energy.

In the presence of an external electromagnetic field, the
general form of the Lagrange function of the averaged
motion is given by

L ¼ Te �Ue � q�þ q

c
A � _x; (4)

where we introduced the effective kinetic energy Te ¼
m _x=2 and expressed the scalar and vector potentials of
the external field as � and A, respectively. Provided that
the amplitude of the electric field does not depend on time,
the total effective energy is an integral of motion:

Te þUe þ q� ¼ const: (5)

B. Initial conditions and effective kinetic energy of ions

In treating the ion motion, we assume that the ions are
generated only in collisions of the electron beam with the
residual gas. The initial velocity of an ion after ionization
is given by

_r 0 ¼ _x0 þ _a0 ¼ _x0 þ �c
qE sinð�0Þ

mc2
; (6)

where �0 is the rf phase at which ionization happens. The
ion gains its initial velocity _r0 interacting with the collec-
tive electric field of the bunch that creates the ion. We
consider this process in detail in Appendix A. Until then,
we assume that intensity of electron bunches is sufficiently
low and neglect their field. Additionally, the ion can obtain
energy during the ionization process. The energy trans-
ferred in the ionization process is mostly absorbed by
knocked out electrons [10]. Thus, the cross section of
collisions with a large energy transfer to an ion is much
smaller than the ionization cross section. Therefore, the
energy transfer in the ionization process can be neglected.
Assuming _r0 ¼ 0 exactly, we find _x0:

_x 0 ¼ ��c
qE sinð�0Þ

mc2
: (7)

The associated effective kinetic energy is given by

Te0 ¼ m
_x2
0

2
¼ mc2

2

�
�qE
mc2

�
2
sin2ð�0Þ ¼ 2Uesin

2ð�0Þ: (8)

We note that this analysis can be applied without any
modification to ions produced in collisions with multipac-
tor and dark current electrons. However, in this paper, we
assume that high levels of multipacting and dark current
are not acceptable for a continuous-wave (CW) SRF photo-

gun with a GaAs cathode because of the strict requirements
on vacuum level, beam losses, and power losses in the
cavity. Therefore, we neglect ionization from mutlipacting
and the dark current.

III. BNL 1=2-CELL SRF GUN

Brookhaven National Laboratory and Advanced Energy
Systems, Inc. are jointly developing a 1=2-cell supercon-
ducting radio-frequency (SRF) photogun [11]. The gun
will serve as an injector for the BNL R&D ERL [12] and
a test bed for different types of photocathodes. Figure 1
shows the SUPERFISH [13] model of the gun. Table I lists
main gun parameters with their nominal values. Figure 2
shows the accelerating electric field on the gun axis calcu-
lated by SUPERFISH.
The operational residual gas pressure in the gun is ex-

pected to be about 10�11 Torr or lower. At this pressure,
the residual gas mostly will consist of hydrogen. Using (1)
and the gun parameters listed in Table I, we can estimate
that the amplitude of oscillations of Hþ

2 ions in the gun is
less than 60 �m, i.e., well below the characteristic spatial
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FIG. 1. (Color) SUPERFISH model of the BNL 1=2-cell SRF gun.
The horizontal axis corresponds to the gun axis. The vertical axis
is the radius. All dimensions are in centimeters. The cathode is at
the lower left corner of the figure.

TABLE I. Parameters of the BNL 1=2-cell SRF gun with
nominal values. These numbers are used in the paper. The
numbers in parentheses show values after a possible laser
upgrade.

Parameter Value

Beam energy (MeV) 2.0

Emax ðMeV=mÞ 29

Frf ðMHzÞ 703.75

Fbunch ðMHzÞ 9.38 (352)

qbunch ðnCÞ 0.7–5

Ibeam ðmAÞ 7–50 (500)
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scale of field inhomogeneity. Thus, we can apply the
method of a rapid oscillating field to the BNL gun.

A. Motion of ions on gun axis

The axial symmetry of the gun requires that the rf
electric field has only the z component and the rf magnetic
field is zero on the gun axis. Thus, the ion motion on the
gun axis is one dimensional. The electric field calculated
by SUPERFISH (Fig. 2) and Eq. (3) yields the effective
potential energy. The program PARMELA [14] was used to
calculate the rf phase at which electron bunches pass a
given coordinate. Under the assumption that bunches were
short, this simulation yielded the ionization phase �0 as a
function of z shown in Fig. 3. In this simulation, the initial
beam phase was chosen to minimize the beam emittance.

Equation (8) and �0ðzÞ yield the initial effective kinetic
energy Te0 as a function of the ionization coordinate.
Figure 4 shows the effective potential energy (in red) of

Hþ
2 ions on the gun axis. Also, Fig. 4 shows the total

effective energy of Hþ
2 ions as a function of the ionization

coordinate. The total energy curve is divided into two
branches shown by different colors: Ions whose velocity
_x0 points towards the cathode belong to the green branch
(z < 4:5 cm) while those whose velocity points out of the
gun belong to the blue branch (z > 4:5 cm). At z �
4:5 cm, the total effective energy is equal to the potential
energy that corresponds to _x0 ¼ 0.
The total effective energy of ions originating at z <

3:4 cm is larger than the effective potential energy at the
cathode. Also, their velocity _x0 is directed towards the
cathode. Thus, those ions originating at z < 3:4 cm will
reach the cathode. The effective kinetic energy Te of ions
bombarding the cathode is less than 700 eV. All other ions
produced at z � 3:4 cm will be expelled from the gun.

B. Motion of ions off axis

Typically, the radial beam size and the cathode are much
smaller than the reduced rf wavelength �. Therefore, we
consider only ion trajectories with a small radial deviation
from the gun axis compared to �. The electric field off the
gun axis can be expressed via the electric field on the gun
axis and its derivatives with respect to z. Using the notation

E aðzÞ ¼ Ezðz; r ¼ 0Þ; (9)

we can write the electric field Eðz; rÞ to the second order in
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FIG. 3. The rf phase at which electron bunches pass a given
coordinate z.
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FIG. 4. (Color) The effective potential energy (red curve) and
the total effective energy (green and blue curves) of Hþ

2 ions in

the BNL 1=2-cell SRF gun. The green and blue curves, respec-
tively, show the total energy of ions with the effective velocity _x0

pointing towards the cathode and away from the cathode. Ions
with an initial velocity directed towards the cathode and whose
total energy is higher than the maximum potential energy will
reach the cathode.
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FIG. 2. Longitudinal electric field on the gun axis. The longi-
tudinal coordinate z ¼ 0 corresponds to the cathode surface.
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r as

Ezðz; rÞ ¼ Ea � 1

4

�
E00
a þ Ea

�2

�
r2 þ � � � (10a)

Erðz; rÞ ¼ � E0
a

2
rþ � � � ; (10b)

where 0 stands for d=dz. Then, E2 can be written off axis as

E 2 ¼ E2
z þ E2

r ¼ ðEa þ �EzÞ2 þ E2
r

� E2
a þ 2Ea�Ez þ E2

r : (11)

Equations (10a), (10b), (11), and (3) yield the effective
potential energy to the second order in r as

Ue ¼ mc2

4

�
�q

mc2

�
2
�
E2
a � Ea

2

�
E00
a þ Ea

�2

�
r2 þ ðE0

aÞ2
4

r2
�
:

(12)

The radial motion of an ion averaged over fast oscilla-
tions is described by the Lagrange equation,

d

dt

@L

@ _r
¼ @L

@r
; (13)

with the Lagrangian L given by (4). Assuming that ions
originate at rest, the angular component of the ion velocity
and the corresponding angular momentum can be ne-
glected, and the equation for the average ion radius can
be written as

m €r ¼ � @Ue

@r
: (14)

Equation (14) has to be solved simultaneously with the
Lagrange equation for z. However, because we are inter-
ested only in ion trajectories with a small deviation from
the gun axis, we can neglect the effect of the radial motion
on the axial motion. That is, we can solve (14) assuming
that the axial motion does not depend on r and use the
value of _xz on the gun axis.

Generally, Eq. (14) has to be solved numerically. To
solve Eq. (14) we wrote a short Cþþ code using the 1st
order Euler method. Higher order integration methods
were unnecessary because the ion trajectories were smooth
and the curvature of the trajectories was slight. The blue
curve in Fig. 5 shows deviation of ion trajectories from the
initial radius calculated at the cathode and normalized to
the initial radius vs the ionization coordinate. Accordingly,
we see that the radius of the ion trajectories at the cathode
does not exceed the initial radius by more than 17% for
almost all ions that originate between 0 and 3.4 cm.

A solution of (14) also can be found by iterations. If the
trajectory radius changes little, we can limit the solution to
the first iteration and solve the problem analytically. This
approach is described in detail in Appendix C. The green
curve in Fig. 5 depicts the deviation of ion trajectories at
the cathode given by the first iteration [Eq. (C5)]. We
employed the mathematical package MATHCAD [15] and

the field on the gun axis (Fig. 2) to calculate the integrals in
Eq. (C5). This result agrees well up to z � 3 cm with the
numerical solution of (14) described in the previous para-
graph. The first iteration predicts a large orbital displace-
ment for z > 3 and, therefore, cannot be used for ions
originating in that region.
This analysis does not include an external magnetic

field. This is a valid approach for an SRF gun because
the external magnetic field is vanishingly small inside the
gun. For a normal-conducting gun, the field of an emittance
compensating solenoid can penetrate the rf cavity and
affect the ion motion. We consider an external solenoidal
magnetic field in Appendix D.

C. Validation by tracking

To test the results described above a short Cþþ track-
ing code was developed. The code calculated ion trajecto-
ries in the two-dimensional rf field maps generated by
SUPERFISH. Using the classical 4th order Runge-Kutta in-

tegration method [16], the code solved the following sys-
tem of equations:

dz

d�
¼ ~pz (15a)

d~pz

d�
¼ ZeEz

Amuc
2
�2 (15b)

dr

d�
¼ ~pr (15c)

d~pr

d�
¼ Ze

Amuc
2
ðEr�� ~pzB’Þ�; (15d)

where � is the rf phase used as the independent variable.
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FIG. 5. (Color) Normalized deviation of ion trajectories from the
initial radius at the cathode as a function of the ionization
coordinate. Tracking results for r0 ¼ 1 mm and r0 ¼ 2 mm
practically coincide with each other, confirming the linearity
of ion motion close to the gun axis.
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~pr;z is related to the particle momentum pr;z as

~p r;z ¼ pr;z

m!
; (16)

where ! is the rf angular frequency. We note that the
magnetic field term cannot be neglected in (15d) because
its effect on the averaged radial motion of ions is compa-
rable to that of the inhomogeneity of the electric field.
Although this seemingly contradicts Eq. (2), it is trivial
to show that the term rE2 in (2) includes the magnetic
force.

In simulating the beam dynamics in the BNL gun, test
particles were launched from nodes of a rectangular r� z
mesh. The starting points were uniformly distributed over
the interval z ¼ 0:5–10 cm with steps of 5 mm. Radially,
the nodes were located at r ¼ 0, 1, and 2 mm. The simu-
lated axial motion agreed very well with predictions of the
1D model described in Sec. III A: Ions originating between
the cathode and z � 3:4 cm reached the cathode while
those originating at z > 3:4 cm left the gun. The result of
the simulation of the radial motion is shown in Fig. 5. As
expected, the tracking result is in good agreement with the
numerical solution of (14). Also, it agrees well with the
first iteration for z � 3 cm. Finally, we point out that the
trajectories corresponding to different initial radii normal-
ized to the initial radius yield almost the same result,
thereby, proving the linearity of the radial ion motion.

D. Rate of ion bombardment. Comparison to a DC gun

The number of ions bombarding the cathode normalized
to the extracted charge is given by

dN

dQ
¼ ni

e

Z D

0
�½EðzÞ�dz; (17)

where ni is the particle density of the residual gas, � is the
ionization cross section, and D is the distance from which
ions can reach the cathode. Figure 6 shows the H2 ioniza-
tion cross section as a function of the electron beam energy
[17]. For the BNL gun, we assumed a residual hydrogen
pressure of 5� 10�12 Torr and the distance D of 3.4 cm.
The beam energy as a function of z was calculated by the
code PARMELA. For these parameters, Eq. (17) yielded�

dN

dQ

�
BNL SRF

¼ 1:7� 106 ions=C: (18)

According to Secs. III A and III B almost all these ions will
strike the cathode.

We can compare this number to the number of ions
produced in a high voltage DC gun. For this example, we
have chosen the following parameters: Beam energy was
650 keV, the accelerating gap was 5 cm, and the residual
gas pressure was the same as that in the example of the
BNL gun, viz., 5� 10�12 Torr. With these parameters,
Eq. (17) yielded

�
dN

dQ

�
HV DC

¼ 2:4� 106 ions=C: (19)

In principle, ions produced in a transfer line can be
trapped in the beam and travel towards a gun as described
in [18]. However, trapped low energy ions cannot reach the
cathode in the BNL gun because of the effective potential
barrier produced by the accelerating rf field. In a DC gun,
the flux of trapped ions can be eliminated by biasing the
anode to a positive potential of a few hundred or thousand
volts as proposed in [18].
Expressions (18) and (19) predict similar rates of ion

bombardment in the BNL gun and in the DC example.
However, it is difficult to accurately compare the cathode
lifetime of DC and rf guns based on the overall rate of
cathode bombardment. First, the ion energy spectra in the
two differ substantially. Second, DC guns are frequently
operated with the laser spot shifted from the cathode center
that causes a fraction of high energy ions to miss the laser
spot. Therefore, a detailed knowledge of the ion spectra
and the efficiency of QE damage as a function of the ion
energy are required to predict the cathode lifetime with
reasonable accuracy.

IV. MITIGATION OF ION BOMBARDMENT

The presented analysis of the ion motion immediately
suggests two mitigation techniques: rf phasing and cathode
biasing.
The dependence of the initial drift velocity _x0 on the

ionization phase can be employed to suppress ion bom-
bardment in a single-cell gun. If the force �eEðrÞ�
cosð!tþ c Þ acting on electrons is accelerating in the
phase range from ��=2 to �=2, the initial velocity _x0

points in the direction of acceleration when the phase�0 is
between 0 and �=2 and in the opposite direction when �0
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FIG. 6. H2 ionization cross section as a function of the beam
energy.
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is between ��=2 and 0. Thus, the initial drift velocity _x0

of all ions will point out of the gun if the rf phase changes
between 0 and �=2 (plus an integer number of full rf
cycles) during the acceleration of electron bunches. Ions
with a drift velocity pointing out of the gun and a total
effective energy greater than the effective potential energy
for all z greater than the ionization coordinate will exit the
gun. Only a small portion of ions originating close to the
cathode still will be able to strike the cathode. Because a
positively charged ion is accelerated towards the cathode
immediately after ionization, it can reach the cathode on
the first rf cycle after the ionization. If the ion does not
strike the cathode on the first rf cycle, it will drift away
from the cathode. The distance from which the ion can
reach the cathode depends upon the rf phase at which the
beam is generated. However, this distance cannot be larger
than double the amplitude of the fast oscillations near the
cathode. We note that the phase range from 0 to �=2might
not be optimal for minimizing the emittance and energy
spread.

The phasing method described above is not applicable to
a multicell gun because the accelerating phase cannot be
limited to the range between 0 and �=2. Cathode biasing
can be used in this case. As shown in Sec. III A, a bias
voltage of a few hundred volts might suffice to significantly
reduce the rate of ion bombardment.

V. CONCLUSIONS

Using the ponderomotive potential allows for detailed
studies of the motion of ions in an rf gun without employ-
ing tracking. This method yields the impact energy of ions
and the rate of cathode bombardment as functions of the rf
frequency, accelerating gradient, and accelerating phase.
With this information, mitigation techniques, similar to
those we described in the paper, can be developed to reduce
the rate of ion backbombardment.
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APPENDIX A: EFFECT OF ELECTRON BEAM ON
ION MOTION IN BNL SRF GUN

1. Effect on axial motion

The interaction between an ion and the field of the
electron beam changes the ion momentum and kinetic
energy. First, we consider the interaction with a bunch
that produces the ion. In general, treating this process for
a relativistic beam with image charges is complicated.
However, we note that the force on the ion is maximum
close to the cathode where the beam is nonrelativistic and
the field of the image charges is strongest. For the non-

relativistic beam, Eq. (B8) yields the corresponding varia-
tion in the ion momentum:

�p

Tb

¼ ~F dcðziÞ; (A1)

where Tb is the time interval between electron bunches,

and ~F dcðziÞ is the electric force produced by a portion of an
equivalent DC beam extending from the ionization coor-
dinate zi to infinity. The equivalent DC beam has the same
parameters as the CW beam, including the size, velocity
profile, and the current, but lacks the time structure. This
force can be easily determined by a standard static solver
such as Poisson [13].
Equations (6), (8), and (A1) yield the initial effective

kinetic energy:

Te0 ¼ mc2

2

�
�q½2�hEb � Eai sinð�0Þ�

mc2

�
2
; (A2)

where h is the harmonic number, Eai is the rf electric field
on the gun axis at the ionization point zi, and Eb is the
electric field at zi produced by the portion of the equivalent
DC beam with z > zi. Figure 7 shows the initial effective
kinetic energy (A2) in the BNL gun for three different
bunch intensities: 0 [same as Eq. (8)], 1 nC, and 5 nC. The
beam field was calculated by Poisson. In this simulation,
the CW beam was represented by the DC beam with the
same average current and the charge density given by

�ðzÞ ¼ I

vðzÞS ; (A3)

where v is the beam velocity and S is its cross sectional
area. This result shows that the effect produced by 1 nC
bunches is less than 5% and is negligible. The variation in
the initial effective kinetic energy caused by 5 nC bunches
reaches 30% close to the cathode, where the beam field is
maximum. However, even this variation is too small to

0 1 2 3 4 5
z(cm)

0

100

200

300

400

500

600

700

Te
0(

eV
)

0 nC
1 nC
5 nC

FIG. 7. (Color) Initial effective kinetic energy of ions in the
BNL gun for three different beam bunch intensities: 0, 1, and
5 nC.
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significantly affect the flux of ions bombarding the cath-
ode. We note that the maximum kinetic beam energy for
the shown z range is approximately 1 MeV. Therefore, the
shown change in the effective kinetic energy is
overestimated.

After ionization, the ion can interact with more bunches
before it reaches the cathode. Figure 8 shows the number of
ion-bunch collisions for the 9.38 MHz operational mode
(h ¼ 75) as a function of the ionization coordinate zi. (We
omitted the bunch that produces the ion.) Accordingly, if
the ion originates between 0 and 1.5 cm, it does not collide
with the beam and, thus, is affected only by the bunch that
generates the ion. As demonstrated in Appendix B, the
total variation of the kinetic energy of the ion in collisions
with electron beam bunches can be crudely estimated as a
negative variation of the ion potential energy in the equiva-
lent DC beam. Poisson simulations revealed that the po-
tential drop along the axis of the DC beam is
approximately equal to 0:2 V=mA. Noting that the effec-
tive kinetic energy of most ions is above 100 eV, we can
consider only the interaction with bunches that create ions
and disregard collisions with other bunches up to a beam
current of a few hundred milliamperes, i.e., much higher
than the nominal beam current at a 9.38 MHz bunch
repetition rate.

The analysis outlined above can significantly overesti-
mate the beam field at the exit of the gun where the beam is
relativistic. Instead, the potential difference induced by the
variation in the beam size and the transition from the gun
cavity to the transfer line can be roughly estimated as [10]

�Ub ¼ 2I

c
ln

�
a1b2
a2b1

�
; (A4)

where a1;2 and b1;2, respectively, are the beam size and the

radius of the vacuum pipe at two different locations.
Neglecting the variation in the beam size and assuming
that the radius of the vacuum pipe is 5 times smaller than
the radius of the gun cavity (b1=b2 	 5), we obtain
j�Ubj ¼ 0:08 V=mA for the BNL gun. Thus, the potential
difference induced by the beam at the exit of the gun can be
neglected up to a beam current of a few hundred milli-
amperes. We note that this number should be approxi-
mately the same for all rf guns because of the
logarithmic dependence on the pipe radius.

2. Effect on radial motion

According to the standard approach described elsewhere
(for example, [10]), the transverse motion of ions in the
CW beam is equivalent to the motion in a focusing channel
composed of focusing lenses and drifts. Treating such
motion involves the standard matrix analysis and is
straightforward.
When the beam is the only source of transverse focusing,

the motion of ions becomes unstable if the phase advance
of ion oscillations per an ion-bunch collision exceeds �.
For a round relativistic beam, the threshold current is given
by

Ith ¼ 2Aa2e

Zrpc
f2b; (A5)

where fb is the bunch repetition rate, rp is the classical

proton radius, and a is the beam radius. Should the ion
motion become unstable, the amplitude of ion oscillations
will grow exponentially with the number of collisions until
it exceeds the beam size. If the beam current is smaller than
the threshold current, the ions are confined transversely
within the beam.
In principle, ion trajectories can be calculated to almost

any degree of accuracy considering individual collisions
with electron bunches and solving (14) between the colli-
sions. However, we emphasize that to estimate the rate of
cathode ion bombardment it is sufficient to demonstrate
which ions can reach the cathode without knowing the
exact details of their trajectories. Below the threshold
current (A5), the beam focuses ions towards the gun axis
and brings more ions to the cathode. Thus, we can assess
the rate of cathode ion bombardment without the beam and
use this number as a lower boundary estimate of ion
bombardment with the beam present. Above the stability
threshold, a similar approach can be applied to ions if the
amplitude of their oscillations does not grow substantially.
The electron beam with a radius of 2 mm and a bunch

repetition rate of 9.38 MHz will have a net focusing effect
on Hþ

2 ions in the BNL gun provided that the current is
below 500 mA. As the maximum beam current will not
exceed 50 mA in the 9.38 MHz operational mode, we can
safely assume that almost all ions originating between 0
and 3.4 cm along the gun axis will strike the cathode.

0 1 2 3 4
0

2

4

6

8

10

z (cm)

n c

FIG. 8. (Color) Number of ion-bunch collisions as a function of
the ionization coordinate. Ions originating beyond the point z ¼
3:4 cm do not reach the cathode.
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APPENDIX B: EQUIVALENT DC BEAM

In this section, we show that the variation of the kinetic
energy experienced by an ion in collisions with electron
bunches is approximately equal to the variation of the ion
potential energy in the equivalent DC beam, which has the
same parameters as the CW beam, including the size,
velocity profile, and current, but lacks the time structure.
This model includes the space charge field but omits the
wakefield induced by the CW beam.

Treating the interaction between the ion and the beam,
we make the following assumptions: (i) we note that the
force on the ion is maximum close to the cathode where the
beam is nonrelativistic and the field of image charges is
strongest. Therefore, to crudely estimate the effect of the
beam field on the ion, we can assume that the electron
beam is nonrelativistic; (ii) considering that electrons
move much faster than ions, we assume that the ion posi-
tion does not change during a collision with an electron
bunch; (iii) we assume that each collision causes only a
slight variation of the ion momentum. Under these assump-
tions, the instantaneous longitudinal force on an ion can be
written as an integral of contributions produced by infini-
tesimally thin charged slices with a radius equal to the local
radius of the beam:

F ðzi; tÞ ¼
Z 1

0
Gðz; ziÞdq ¼

Z 1

0
Gðz; ziÞ�ðz; tÞdz; (B1)

where zi is the ion z coordinate, dq is the charge of each
slice, and �ðzÞ ¼ dq=dz is the beam linear charge density.
The function Gðz; ziÞ depends on the beam size and in-
cludes the field of image charges. This formula is correct
for both DC and CW beams. For a DC beam, formula (B1)
yields

F dcðziÞ ¼ I
Z 1

0

Gðz; ziÞ
vðzÞ dz; (B2)

where I is the beam current.
Considering the interaction of the ion with the CW

beam, first, we analyze collisions with bunches that did
not generate the ion. To simplify the analysis, we assume
that the bunch distribution is given by the delta function:

�ðz; tÞ ¼ Qb�

�
z�

Z t

0
vðtÞdt

�
; (B3)

where Qb is the bunch charge. The full variation of the ion
momentum in a collision is given by

�p ¼
Z 1

0
F ðzi; tÞdt (B4)

¼ Qb

Z 1

0

Z 1

0
Gðz; ziÞ�

�
z�

Z t

0
vdt

�
dzdt: (B5)

Integrating over t and dividing the result by the time
interval between bunches, we obtain

�p

Tb

¼ I
Z 1

0

Gðz; ziÞ
vðzÞ dz ¼ F dcðziÞ: (B6)

Thus, the variation of the ion momentum in a collision with
a bunch, divided by the time interval between bunches, is
equal to the force produced by the equivalent DC beam.
The total variation of the ion energy is a sum over

collisions experienced by the ion:

�T ¼ X
�Tj �

Xpj�pj

m
¼ X

vj�pj ¼
X

vjTb

�pj

Tb

¼ X
�zjF dc;j; (B7)

where the subscript j denotes individual collisions and �zj
is the product vjTb approximately equal to the distance the

ion travels between collisions. The sum
P

�zjF dc;j is a

piecewise approximation of the integral
R
F dcðzÞdz. Thus,

the total variation of the ion kinetic energy is approxi-
mately equal to the negative variation of its potential
energy in the equivalent DC beam.
A similar analysis can be applied to the interaction with

the bunch generating the ion. However, in this case, the
lower limit of the time integral has to be changed from 0 to
the time it takes for the bunch to reach the ionization
coordinate, zi. This yields the momentum variation:

�p

Tb

¼ I
Z 1

zi

Gðz; ziÞ
vðzÞ dz ¼ ~F dcðziÞ: (B8)

Thus, the variation of the ion momentum caused by the
bunch producing the ion, divided by the time interval
between the bunches, is equal to the force produced by
the portion of the equivalent DC beam extending from zi to
infinity. We note that the momentum variation (B8) is
proportional to the bunch charge.

APPENDIX C: MOTION OF IONS OFFAXIS, FIRST
ITERATION

Equation (14) can be solved iteratively. If the trajectory
radius changes little, we can limit the solution to the first
iteration. That is, we write the ion trajectory radius as r ¼
r0 þ r1, where r0 is the initial radius, and the equation for
the first iteration r1 as

m€r1 ¼ Frðr0Þ: (C1)

The standard method of variation of constants yields the
solution of (C1)

r1ðtÞ ¼
Z t

0

Fr

m
ðt� �Þd�þ _xr0t; (C2)

where _xr0 is the r projection of _x0. It is convenient to
change the independent variable from t to z according to

t ¼
Z z

zi

d	

_xzð	Þ ; (C3)
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where _xz is the z projection of _x and zi denotes the
ionization coordinate. We note that _xz depends on zi as a
parameter. Thus, r1ðzÞ can be written as

r1ðzÞ ¼
Z zi

z

Frð	0Þd	0

m _xzð	0Þ
Z 	0

z

d	00

_xzð	00Þ �
�
dr

dz

�
0

Z zi

z

_xz0d	

_xzð	Þ :
(C4)

Using Eqs. (5), (7), (8), and (C4) and taking into account
_xr � _xz, we obtain the radial deviation of the ion trajectory
at the cathode, r1c ¼ r1ð0Þ, normalized to r0:

r1c
r0

¼
Z zi

0

½EaðE00
a þ Ea

�2Þ � E02
a

2 �d	0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
aif1þ 2sin2½�ðziÞ�g � E2

a

q
�

Z 	0

0

d	00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
aif1þ 2sin2½�ðziÞ�g � E2

að	00Þ
q

þ E0
ai

2Eai

Z zi

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E2

aisin
2½�ðziÞ�

E2
aif1þ 2sin2½�ðziÞ�g � E2

a

s
d	; (C5)

where Eai denotes EaðziÞ. Equation (C5) is valid only if the
inequality r1ðzÞ=r0 � 1 is satisfied for all z.

APPENDIX D: EFFECT OF MAGNETIC FIELD

The rf guns, superconducting and normal conducting,
typically are equipped with one or more solenoids to
preserve the transverse emittance of the beam. In a
normal-conducting rf gun, an emittance compensating so-
lenoid usually is sited at the exit port of the gun cavity.
Also, a normal-conducting gun can be equipped with a
bucking solenoid to cancel out the solenoidal field at the
cathode. The solenoids are aligned coaxially with the rf
cavity. Because both the rf field and the solenoidal mag-
netic field are azimuthally symmetric, the canonical angu-
lar momentum is constant:

P’ ¼ mr2 _’þ qA’r

c
¼ const: (D1)

Equation (D1) along with the initial condition _’0 ¼ 0
describes the angular ion motion. The averaged rz motion
is described by the Hamiltonian function

H ¼ p2
r

2m
þ p2

z

2m
þ�; (D2)

with the effective potential energy [19]:

� ¼ ðP’ � qA’r=cÞ2
2mr2

þUe; (D3)

whereUe is the effective rf potential energy. If the radius of
an ion trajectory is small compared to the inner radius of
the solenoid, the potential A’ðzÞ is approximately equal to

BðzÞr=2, where BðzÞ is the magnetic field on the axis.
The Hamiltonian or Lagrange equations with the poten-

tial given by (D3) can be solved numerically to accurately

calculate ion trajectories. However, in many cases, a crude
estimate of the effect suffices. This can be easily obtained
if the hard-edge approximation is applicable:

1

2�

qBmLe

ð2mc2TeÞ1=2
� 1; (D4)

where Bm is the maximum field, Le is the characteristic
length of the field edge, and Te is the effective kinetic
energy of an ion. Equation (D4) also can be rewritten in
practical units:

8� 10�4 BmðGÞLeðcmÞ
½ATeðeVÞ�1=2

� 1; (D5)

where Bm is expressed in Gauss, Le in centimeters, and Te

in electron volts. If inequality (D4) is satisfied, the radius of
an ion trajectory changes little as an ion crosses the field
edge. The adiabatic condition, which is opposite to (D4), is
not satisfied for a typical range of parameters.
As an ion crosses the field edge, it gains angular velocity

_x’. Accompanying the appearance of the angular velocity

is a reduction in the axial velocity. If the hard-edge ap-
proximation is applicable, the reduction of the axial veloc-
ity is given by

� _xz
_xz

� � _x2’

2 _x2z
¼ � q2B2

mr
2

16mc2Te

: (D6)

Comparing (D6) to (D4) and considering that the beam size
typically is much smaller than the length of the solenoidal
field edge, one can conclude that the effect of the magnetic
field on the longitudinal motion of ions is negligible if (D4)
is satisfied.
The radial motion strongly depends on where ionization

occurs. If an ion originates in a field free region and enters
the solenoidal field, the effective potential energy (D3) is
given by

� ¼ q2B2ðzÞ
8mc2

r2: (D7)

This focusing potential will keep the radial motion of ions
bound.
Should an ion ionized inside the solenoid leave the field,

the effective potential energy (D3) in the field free region
becomes

� ¼ q2B2
0r

4
0

8mc2r2
; (D8)

where r0 is the radius of the ionization point and B0 is the
magnetic field on the axis at z equal to that of the ionization
point. The defocusing effective potential (D8) is caused by
the angular velocity gained by the ion as it leaves the field.
If the initial radial velocity and other potential contribu-
tions are zero, the radius of the ion trajectory in the
potential energy (D8) is
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rðtÞ ¼ r0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ _x2’

r20
t2

vuut ; (D9)

where t is time after the ion left the field. The growth of the
trajectory radius can engender a reduction of the ion flux
per unit area. If the axial velocity _xz does not change
significantly over a distance d, we can substitute d= _xz for
t in the last equation. If d is not significantly larger than Le

and (D4) is satisfied, the growth of the trajectory radius is
small.

Thus, we can conclude that the effect of the solenoidal
magnetic field can be neglected provided that the hard-
edge condition (D4) is satisfied. When this condition is not
met, ion trajectories can be calculated numerically.
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