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Working Group Seminar
On Interpretation of Schottky Signals

First session: 2:30 pm, Wednesday Nov. 16
Location: 911B LCR
Speaker: Mike Blaskiewicz

Specifics: The plan is to derive longitudinal
bunched beam Schottky signals including the
effects of synchrotron frequency spread &
introducing a good approximation for the Bessel-
shaped synchrotron sidebands.

All are welcome to attend. The level of the
discussion is expected to be very high. This is
NOT an introduction. Expect to have to do work.



Schottky Basics

"Schottky signals represent the sum of the

incoherent signals of all the particles in the
beam” (D.Goldberg & G.Lambertson)

For N particles rms Schottky power is N times
the power of 1 particle.

If coherent motion is introduced (any), the N
particle signal will be N times that of a single
particle.

rms coherent power is N° times the power of a
single particle & N times the power of the
Schottky signal!

Dynamic range: Bunched beams generate intrinsic
strong coherent signal.



Longitudinal (L)

Table 2.

Quantities Obtainable from Schottky Spectra

From LBLTech. Note by Goldberg & Lambertson

or Bunched (B)
Transverse (T) or
Signal Unbunched (U) Observed Quantity

L B, U Integrated Intensity

T B, U Integrated Intensity

T B, U Center frequency of
betatron band

T B, U Overall Width of Band

L, T B Satellite spacing

L, T B Satellite Line Width

L B, U Overall Width and Shape
of Band

T B Width of central

satellite line

Derived Quantity

Number of particles ()
N02

g
q of reference particle

At high frequency: nnfoﬂp/p

At low frequency: Efoﬁp/p

Synchrotron frequency
Spread in synchrotron frequencies

nAp/p (Even if neither known
absolutely, if one is constant,

can measure % change in the other),
momentum distribution

Amplitude-dependent tune spread



Cause

Intrinsic Signal

Coherent synchrotron
oscillation

Intrabunch osecillation

Cause
Fixed offset,

imperfect differencing

Coherent betatron
oscillation

Coherent synchrotron

oscillation

Intrabunch
oscillation

Table 3:

Table 3a.

Sources of Coherent Signals in Bunched Beams

Longitudinal Signals

Frequency

nfg

nf, + satellites,
up to BCF

Intrinsic signal
pattern centered
around oscillation
frequency

Table 3b.

Frequency

nf,, up to BCF

(ntq)f,, up to BCF

satellites centered
about nf, (but no
nfy line), up to BCF

Intrinsic longitudinal
signal pattern, cen-
tered around oscilla-
tion frequency

Comments

Intensity may vary with n depending on number of

bunches and relative population. Signals roll off
at a frequency which is roughly 1/2wog, the bunch-
cutoff frequency [BCF]. Signal constant with time.

If caused by faulty initial matching, signal will
de-cohere with time

Oscillation frequency must exceed bunch-cutoff
frequency. May either grow or disappear if
“self-healing".

Transverse Signals

Comments

Signal constant with time; may be easier to cope
with since displaced from incoherent signal at
(ntq) £,

1f caused by faulty initial matching, signal will
de-cohere with time

Only observable if pickup in region of non-zero
dispersion. 1If caused by faulty initial matching,
signal will de-cohere with time

May either grow or disappear if "self-healing"



Line Locations and Widths

Bunched beams: each revolution line
splits into an infinite number of
synchrotron satellites separated by
synchrotron frequency with
amplitudes proportional to Bessel
functions.

ef a R Z‘J Qé:/n]a)oz. )91[ n+q)-Q& /1 Jwg+ pQs )t+p‘P + ]
p=—0

Harmonic bands at nf, with Y Vi

betatron bands split into .y

pairs of sidebands at i \

frequencies (m+-q)f, /\ VAL A\S
Betatron sidebands have f'f \ \ eedd

similar structure of N il S\

synchrotron satellites



Line Locations and Widths

® Total line widths (bunched or unbunched)

Af =npyt ap Longitudinal Af =|-(ntq)y+¢& foﬁ Transverse
i p

@ Individual Lines in bunched beam spectra
Af” = Af em Central linewidthin longitudinal

Af, = AfHO + uAf, 1" satellitelinewidth in longitudinal
Af, =spread of synchrotron frequency due to non - linear

synchrotron oscillations (dependent on fraction RF

bucket isfilled by beam)
Af? = Af” + f,AQ, Central linewidthin Transverse

AQ, Isdueto non - linear betatron oscillations, beam - beam
tune spread.

Af = Af D+ uAf



Table 5: Factors Affecting "Usefulness" of Schottky Spectra

Tnput signal-to-noise ratio high enough to observe signals in a
"reasonable” time.

Frequencies low enough that bands don't overlap.

Frequencies high enough that at least one satellite line observed.
Ability to resolve at least the central satellite lines.

Ability to determine band center.

Ability to determine overall bandwidth.

Ability to detect both longitudinal and transverse signals.

Freedom from coherent signals to avoid
a) sgpectral contaminants

b) detector damage

3 . . 2
Ability to read total incoherent power to determine W and NGL«

Reasonable data acquisition time/hardware

Response either directional or rapid enough to permit separation of p
and p signals.



Parameters

O Specifications:
V' Qpeqs = 0.001 at Store
v &£+ 1 at Store

Basic parameters
v f..= 7813 - 78.196 kHz (protons)
v = 0.00182 at v = 106.5
v dp/p ~ 0.001 (w/o0 200 MHZz)

Parameter |LF system |HF system
Fregq. 245 MHz 2.07 GHz
n 3133 26473
Line Widths |~440 Hz ~3700 Hz




LF Schottky linewidth -
Ions at store

after rebucketing,
pickup well centered

no coupling,
chormaticity small
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HF Schottky
linewidth -
Tons at store

3dB width

~ 3KH

~ .04 tune unh:;

HFffts.mon PPM User: RHIC_Cu_U1l
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"New" Low Frequency Schottky System

— To PLL
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'set’ tunes (as measured by Schottky) vs eigentunes (PLL)
in the presence of coupling from rotator ramp
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Injection Coupling and Coherent
lines from the IPM
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Spectral effects of beam out of bucket,
beam offset plus dispersion (transverse mode)

asymmetric
rev line (due

to beam beam out of
offset plus bucket
dispersion?) /

HFffts.mc User: RHIC\Cu_U
File PPM Setup Logging\[liagnostics

[ no asymmetry
| in longit mode

197 MHz on



Beam out of
bucket - Jan 9th

out of bucket beam
survives in blue

Start time Sun Jan 3 00:13:24 2002 , Fill 5343

201
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non-lin chrom
at store

PLL tune measurement
during radial shift
chrom measurement

qLoopArrays.mon PPM User: RHIC_Cu_Ul

File PPM Setup Logging Diagnostics

Mon Feb 14

0,238
0,237
0,236
0,235
0,234
0,233
0,232
0,231
0,230
0,229
0,228
0,227
0,226
0,224
0,224

2005

i
NI

11330100 11332100 11334100 11:36:00 11338200

Window Event

time of day

qLoopTune., yhituneBuf FH*] qLoopTune, yv:tuneBuf FHL*]

HF Schottky chrom
measurement during
radial shift.

If chrom were linear this
would be flat.

Big effect.
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Experiments
Lots of parasitic "getting familiar” with signals
(LF mostly, and HF?.

Comparisons of Schottky (HF/LF) tunes and
tune spreads to PLL and Artus measurements.

Understanding emittance measurements -
absolute emittance calibration from rev line

non-lin chrom measurement from Schottky
Tune ripple measurements

Coupling measurements (how well are coupling
lines resolved?)

Synchrotron radiation measurement?
Understanding tune spread measurements
Beam-beam effects? Gap-cleaning effects?



Conclusions

MOST THINGS you want to know about the beam are
available (without perturbation!) in the Schottky
spectrum, if you can figure out how to get it out.

New LF Schottky system needs commissioning time.

A significant amount of the "experiments” time needs to
be used to develop confidence in the improved Schottky
data

To ensure Schottky data is not "corrupted” by other
coherent phenomena, coordination is needed. (with Gap
cleaning, IPM, Stochastic cooling, ...)

To get a first pass at setup and calibrations we need a
few hours at the beginning of the run (dedicated “quiet”
operations ftime).



Backup, Reference material,,,,



Standard References

D. Boussard lectures:
http://preprints.cern.ch/cernrep/1987/1987-003 v2/1987-003 v2.html

R.Siemann USPAS lectures: (1992S) Topics in
Experimental Accelerator Physics

W. Mackay USPAC lectures: (2005S)
Accelerator Physics Supplementary Notes

D.A.Goldberg & G.R. Lambertson: Schottky

Monitors for the Tevatron Collider, LBL
internal tech. note no. BECON-61, LBID-1129
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O O O O O

Improvement to chromaticity calculation

adjust pickup position so that rev line asymmetry is
removed

remove rev line coherence by successive iteration
fitting
o this gives incoherent rev line shape, uncontaminated by any
transverse effects!

scale rev line so 3dB power is same as betatron power
subtract betatron line from rev line

do polynomial fit to this difference

coefficients are 1st, 2nd, 3rd,... order chroms (?)
this ignores other effects (beam out of bucket,...)



Non-linear Chromaticity
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Emittance Calibration

adjust pickup position so that asymmetry is removed

o sweep pickup position around this null to get a series
of spectra from which power vs position data can be
extracted

remove rev line coherence from these spectra by
successive iteration fitting

comparison of power in betatron line with position
dependence of power in rev line gives absolute (albeit
dependent on assumptions of lineshape) calibration of
emittance



