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Outline
• Results of APEX Run-9

– RHIC pp2pp optics measurements

– Linear gradient error corrections

• Plan of optics correction experiments

– Improve existing SVD algorithm: Verify range of knobs, iteration, 
multiple errors correction.

– Investigate new algorithm: Multi-Objective Generic Algorithm 
(MOGA).



pp2pp yellow optics measurement: Ac dipole data

Rms beta- 
beat: 8.5%

Rms beta- 
beat: 5.6%



pp2pp blue optics measurement: Ac dipole data

Rms beta- 
beat: 7.6%

Rms beta- 
beat: 6.7%
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IR6 *, 0 , s*



 

* and s* are minima, not necessarily located at s=0


 

Indeed, design optics have about s*=+/-4m


 

Calculate *, 0 , s* from quadratic fits of DX/Q1 BPM optics

Method *(bh)
[m]

*(bv)
[m]

*(yh)
[m]

*(yv)
[m]

s*(bh)
[m]

s*(bv)
[m]

s*(yh)
[m]

s*(yv)
[m]

mad 22.18 21.41 22.05 20.74 3.88 -4.28 -3.88 4.09

OptiCalc 22.24 20.25 21.88 19.25 6.01 -2.66 -2.53 6.96

quad tweak 19.3(1.4) 24.0(3.2) 21.0(2.2) 17.4(0.7) 4.36(0.25) -4.93(0.82) -4.36(0.73) 5.32(0.24)

AC dipole 22.75 21.00 21.82 19.77 3.13 -3.92 -5.02 4.68

Method 0 (bh) 0 (bv) 0 (yh) 0 (yv)

mad 0.18 -0.21 -0.18 0.21

OptiCalc 0.27 -0.13 -0.12 0.36

quad tweak 0.23 -0.21 -0.21 0.31

AC dipole 0.16 -0.19 -0.23 0.24



 

Some quad tweak error bars in * are 
large, 5-10% (bv * is 20%!)



 

Variations in * measurements are 
on this order, 5-10%



 

AC dipole optics errbars mostly ~5%


 

All s*, 0 are right levels/signs


 

DX BPM scoords are important!!

Courtesy of T. Satogata
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Raw optics comments



 
*, 0 , s* measured two ways, modeled two ways

• Barely consistent within quad tweak error bars
• Quad tweak appears to be outlier but expected to be best method

- Consider and investigate systematics in quad tweak/AC dipole
• Why are mad and OptiCalc calculations so different?



 
AC dipole measured beta waves of 5-10% in all planes

• Optics seem pretty good: 100 GeV, only one *=1m insertion
• Yellow horizontal needs further study; bad data set?
• Data should be good enough for beta beat correction tests



 
Next steps

• AC dipole data also includes (more accurate) phases
• Calculate transport, compare to model and fitted transport
• Include full 4D transport, measured rolls, known errors (SteveT)
• Extrapolate on-axis measured transport to near-aperture transport

Courtesy of T. Satogata



Status of gradient error correction

• Three experimental sessions were devoted to Linear 
optics corrections in RHIC 2009 run. The SVD algorithm 
was verified from these experiments. As a result of 
corrections, the rms phase beat was reduced by 40% and 
30% respectively for two preset quadrupole errors. 

• Substantial variations of measured phases were observed, 
possibly due to the slow magnets variation. 

• New algorithm needs to be developed in order to improve 
the noise tolerances and identify qudrupole errors. 
– Bpm data quality and the number of available bpms
– The range of knobs. 



Experiment of Linear Optics Correction 



Typical phase beat measurement 
(Drive at                   for baseline.) 01.01  xQ

Experiment of Linear Optics Correction Continued 1

Reconstructed Quad Errors

Substantial variation from measurement to 
measurement, possibly due to magnets 
oscillation.

The data for SVD analysis was obtained 
by averaging 12 sets of measurements



Experiment of Linear Optics Correction Continued 2

Applied Correction

Comparison of phase beat

Rms phase beat reduced from 
0.0454 rad (2.6 degrees) to 
0.0279 rad (1.6 degrees), i.e. 
40% of reduction



The rms phase beat went down from 
0.027 rad to 0.019 rad, i.e. 30% reduction. 

Reconstructed Quad errors are noisy 
and the amplitude is 40% less 
compared with the pre-set error.

Experiment of Linear Optics Correction Continued 3



Plan for APEX Run_10

• Applying SVD algorithm iteratively to test the 
effective range of the 36 trim quads on multiple 
gradient errors correction.

• Another algorithm for searching the optimum 
correction strength, MOGA,  is under study. It has 
been investigated and confirmed in ALS 
optimization by Lingyun Yang. (L. Yang et al, NIM 
A 609 (2009) 50-57)



What is MOGA?
• Multi-objective: optimize multiple functions simultaneously.

– Solution A is ‘better’ than B means that A is no worse than B for all 
objectives and is strictly better than B in at least one objective. 

– Search for a set of solutions: Pareto optimal

• Genetic searching:

Genetic searching:

1. Initialize: uniformly generate 
random solutions in variable space
2. Cross-over: generate next 
generation (children) based on initial 
solutions (parents). (2 parents 
generate 2 children)
3. Mutation: change the children 
slightly
4. Nature selection: calculate 
objective and take the top half of 
parents and children (so never worse 
from generation to generation)

SVD searching:
1. Start from one specific solution: 

assume the optimum is not far from the 
starting point.

2. Calculate the gradient in variable 
space:
Phase response matrix

3.    Inverse Phase response matrix:
obtain one specific solution

Advantages: 

Global: don’t rely on the assumption that the 
starting point is close to optimum.

Constraints: constraints on variable ranges can 
be easily added.

Multi-objective: can be used to optimize multiple 
lattice functions.



Multi-Objective Genetic Algorithm

The Evolution of Optimization

Our optimization problem [Yang et al., 2008, Robin et al., 2008]:

Optimize:
1 Emittance ε.
2 min(|βx − 1.0|).

Constraint:

|Tr(Mx)| 6 2, |Tr(My )| 6 2
max(βx) 6 35 m, max(βy ) 6 35 m
max(ηx) 6 0.4 m

Parameters:
1 QF,QD,QFA in one cell.

εx and |βx − 1|

1 Evolution of objective functions. ε, |βx − 1|

MOGA Lingyun Yang 04/09/2009, NSLS-II, BNL 11 / 27



Application on Lattice Optimization

3 Parameters, optimize ε and βx → 1m

By tuning kQF , kQD , kQFA we can optimize
emittance εx and |βx − 1| at the center of
straight.

Red: violate the constraints, or no physical
solution.

Green: meet the constraints.

Blue: Pareto optimal set, the best solutions
so far.

1 Generation 19

2 Generation 46

3 Generation 66

4 Generation 130

MOGA Lingyun Yang 04/09/2009, NSLS-II, BNL 19 / 27
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Plan of Implementing MOGA

• Implement MOGA into linear optics correction 
code and test it by simulation.

– For linear optics correction, the function to be minimized at the moment will be 
the rms phase beat in both planes and the variables will be the strengths of the 
trim quadrupoles.

– It has the potential to optimize other lattice functions such as ORM and 
dispersion function simultaneously.

• Once the algorithm is confirmed by simulation, 
we would like to test it in RHIC APEX session.



• Thank you!



Determination of trim quads strength
• If the phase-beat is small (about 10% or less), the response of 

phase-beat to trim quads strength can be expressed into the 
following linear equation 





















































tqbpm nn kl

kl
kl

M ......
2

1

2

1






         )22sin(2sin22sin2sin
)2sin(4, QQsignQQ

Q
M jijij

j
ji 






, where M is the phase response matrix determined by the following 
expression

• Usually, the number of bpm is larger than the number of knobs (trim quads)

, i.e.              , and the system is over determined.  It is known that for an     

over determined linear system, the SVD algorithm gives least       solution.
tqbpm nn 

2



• Thus we use the following equation to determine trim quads strength.

Determination of trim quads strength continued 1
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, where      ,       and       are determined by the unique  singular vector 
decomposition of the phase response matrix, i.e. 
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• The SVD technique expands trim quads and bpms into         orthogonal modes

.  Explicitly, one can rewrite (1) into the following form,
tqn

1UU T 1VV T
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Determination of trim quads strength continued 2
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, where                       and  

• Phase-beat components orthogonal to these 36 combination will not be  corrected. 

• If a eigenvalue is zero or is comparable to the noise errors (due to linear approximation 
of model, bpm noise or computer round off errors), the corresponding mode of phase-beat is 
out of the knobs’ range as well. 

• Since the orthogonal condition, the corresponding combination of knobs for very small 
eigenvalue modes is not effective. 

• Furthermore, noise and errors can be significantly amplified for the small eigenvalue 
modes. 

iw
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Blue AC dipole data

12.6% beta wave
7.6% after 3

 

cut

20.9% beta wave
5.4% after 3

 

cut

Courtesy of T. Satogata
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Yellow AC dipole data

22.0% beta wave
8.4% after 3

 

cut

21.3% beta wave
5.3% after 3

 

cut

Courtesy of T. Satogata
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